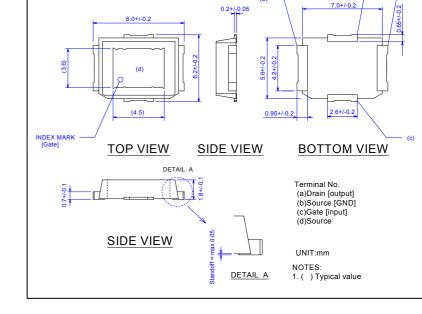
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

RD09MUP2

(b)


RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W

DESCRIPTION

RD09MUP2 is a MOS FET type transistor specifically designed for UHF RF power amplifiers applications.

FEATURES

- •High power gain:
- Pout>8W, Gp>10dB@Vdd=7.2V,f=520MHz
- •High Efficiency: 50%min. (520MHz)
- Integrated gate protection diode

APPLICATION

For output stage of high power amplifiers in UHF band mobile radio sets.

RoHS COMPLIANT

RD09MUP2 is a RoHS compliant product.

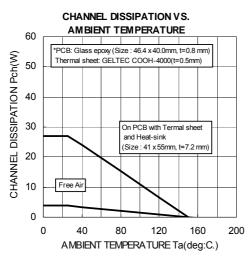
RoHS compliance is indicating by the letter "G" after the Lot Marking. This product includes the lead in high melting temperature type solders. However, it is applicable to the following exceptions of RoHS Directions. 1.Lead in high melting temperature type solders (i.e. tin-lead older alloys containing more than85% lead.)

ABSOLUTE MAXIMUM RATINGS

(Tc=25°C UNLESS OTHERWISE NOTED)

1		/			
SYMBOL	PARAMETER	CONDITIONS	RATINGS	UNIT	ှ D
VDSS	Drain to source voltage	Vgs=0V	40	V	
VGSS	Gate to source voltage	Vds=0V	-5 to +10	V	
ID	Drain Current	-	4.0	А	
Pin	Input Power	Zg=Zl=50Ω	1.6	W	Gort
Pch	Channel dissipation	Tc=25°C	83	W	
Tj	Junction Temperature	-	150	°C	
Tstg	Storage temperature	-	-40 to +125	°C	୍ଦ S
Rth j-c	Thermal resistance	Junction to case	1.5	°C/W	SCHEMATIC DRAWING

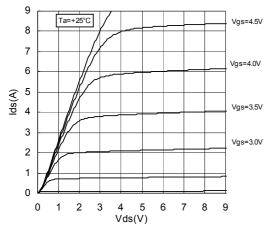
Note: Above parameters are guaranteed independently.

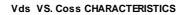

ELECTRICAL CHARACTERISTICS (Tc=25°C, UNLESS OTHERWISE NOTED)

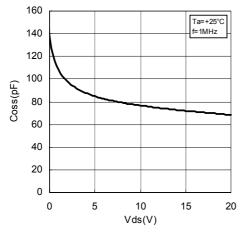
SYMBOL	PARAMETER	CONDITIONS		UNIT		
STWBOL	FARAMETER	CONDITIONS	MIN	TYP	MAX.	
IDSS	Zero gate voltage drain current	VDS=17V, VGS=0V	-	-	10	uA
Igss	Gate to source leak current	VGS=10V, VDS=0V	-	-	1	uA
Vтн	Gate threshold Voltage	VDS=12V, IDS=1mA	0.5	-	2.5	V
Pout Output power		f=520MHz , VDD=7.2V	8	9	-	W
ηD	Drain efficiency	Pin=0.8W,Idq=1.0A	50	-	-	%
VSWRT	Load VSWR tolerance	VDD=9.5V,Po=8W(Pin Control) f=520MHz,Idq=1.0A,Zg=50Ω Load VSWR=20:1(All Phase)	No destroy			-

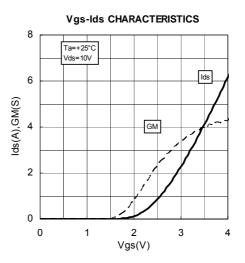
Note: Above parameters, ratings, limits and conditions are subject to change.

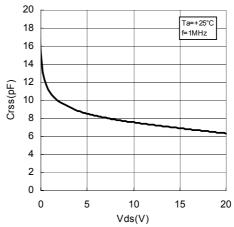
RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W


TYPICAL CHARACTERISTICS



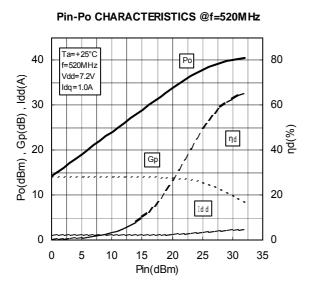

ELECTROSTATIC SENSITIVE DEVICE


OBSERVE HANDLING PRECAUTIONS

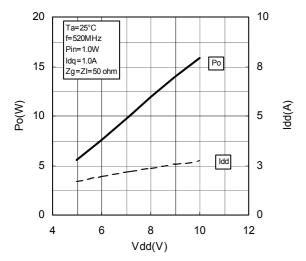

Silicon RF Power Semiconductors

RD09MUP2

160 Ta=+25°C 140 f=1MHz 120 100 Ciss(pF) 80 60 40 20 0 0 5 10 15 20 Vds(V)

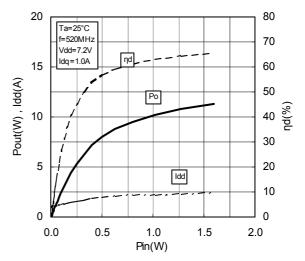

Vds VS. Ciss CHARACTERISTICS

Vds VS. Crss CHARACTERISTICS


TYPICAL CHARACTERISTICS

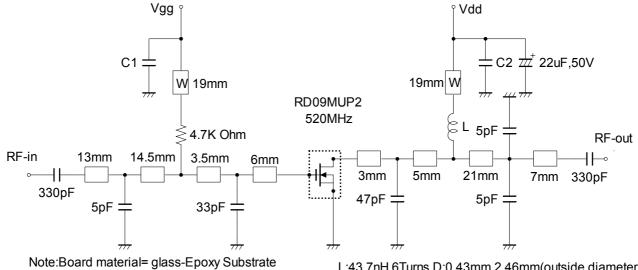
ELECTROSTATIC SENSITIVE DEVICE

OBSERVE HANDLING PRECAUTIONS


Vdd-Po CHARACTERISTICS @f=520MHz

Pin-Po CHARACTERISTICS @f=520MHz

Silicon RF Power Semiconductors


RD09MUP2

RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W

TEST CIRCUIT (f=520MHz)

Micro strip line width=1.3mm/50OHM,er=4.8,t=0.8mm C1,C2:2200pF W:Line width=1.0mm

L:43.7nH,6Turns,D:0.43mm,2.46mm(outside diameter) C1,C2:2200pF

RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W

RD09MUP2 S-PARAMETER DATA (@Vdd=7.2V, Id=500mA)

[MH2] (mag) (ang) (mag) (ang) (mag) (ang) (mag) (ang) (ang) <th< th=""><th colspan="9">RD09MUP2 S-PARAMETER DATA (@Vdd=7.2V, Id=500mA)</th></th<>	RD09MUP2 S-PARAMETER DATA (@Vdd=7.2V, Id=500mA)								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Freq.	S	11	S	21	S12		S	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[MHz]	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-175.7						-173.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120		-176.4	3.651	71.1	0.014		0.804	-174.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	0.905	-176.7		67.4	0.014	-10.4	0.808	-174.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160	0.908	-177.2	2.614	64.2	0.013	-10.9	0.812	-175.1
220 0.916 -178.0 1.787 55.9 0.011 -6.0 0.842 -175. 240 0.918 -178.5 1.602 53.3 0.010 -4.1 0.851 -175. 260 0.922 -178.7 1.442 50.6 0.010 -5.6 0.857 -175. 280 0.923 -178.9 1.297 48.0 0.009 0.6 0.859 -176. 300 0.928 -179.0 1.176 45.8 0.008 2.6 0.863 -176. 340 0.933 -179.6 0.910 40.0 0.008 25.3 0.889 -177. 360 0.936 -179.6 0.910 40.0 0.008 35.5 0.897 -178. 400 0.939 179.7 0.775 36.3 0.008 35.5 0.897 -178. 440 0.945 179.1 0.667 33.4 0.008 45.0 0.900 -178. 460 <td< td=""><td>180</td><td>0.909</td><td>-177.5</td><td>2.273</td><td>61.4</td><td>0.013</td><td>-10.0</td><td>0.819</td><td>-175.2</td></td<>	180	0.909	-177.5	2.273	61.4	0.013	-10.0	0.819	-175.2
240 0.918 -178.5 1.602 53.3 0.010 -4.1 0.851 -175. 260 0.922 -178.7 1.442 50.6 0.010 -5.6 0.857 -175. 280 0.923 -179.0 1.176 48.0 0.009 0.6 0.859 -176. 300 0.928 -179.0 1.176 44.1 0.008 2.6 0.863 -176. 340 0.930 -179.1 1.075 44.1 0.008 8.2 0.866 -177. 360 0.936 -179.6 0.910 40.0 0.008 25.3 0.889 -177. 360 0.939 179.7 0.775 36.3 0.008 35.5 0.897 -178. 420 0.939 179.3 0.718 34.7 0.008 45.0 0.800 -178. 440 0.945 179.1 0.667 33.4 0.009 56.2 0.913 -179. 500 0	200	0.912	-177.6	2.003	58.7	0.011	-8.4	0.830	-175.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	0.916	-178.0	1.787	55.9	0.011	-6.0	0.842	-175.3
280 0.923 -178.9 1.297 48.0 0.009 0.6 0.859 -176. 300 0.928 -179.0 1.176 45.8 0.008 2.6 0.863 -176. 320 0.930 -179.1 1.075 44.1 0.008 8.2 0.866 -176. 340 0.933 -179.6 0.910 40.0 0.008 25.3 0.889 -177. 360 0.936 -179.6 0.910 40.0 0.008 25.3 0.889 -177. 360 0.937 179.9 0.841 37.9 0.007 27.2 0.895 -177. 400 0.939 179.7 0.775 36.3 0.008 40.1 0.899 -178. 420 0.939 179.3 0.718 34.7 0.008 40.1 0.899 -178. 440 0.945 179.1 0.667 33.4 0.008 45.0 0.900 -179. 480 0.	240	0.918	-178.5	1.602	53.3	0.010	-4.1	0.851	-175.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	260	0.922	-178.7	1.442	50.6	0.010	-5.6	0.857	-175.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280	0.923	-178.9	1.297	48.0	0.009	0.6	0.859	-176.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	0.928	-179.0		45.8	0.008	2.6	0.863	-176.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	320	0.930	-179.1			0.008	8.2	0.866	-176.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	340	0.933		0.989	42.3	0.008	15.1	0.878	-177.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	360				40.0				-177.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	380			0.841					-177.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-178.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-178.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440				33.4		45.0		-178.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-179.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	480								-179.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									179.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									179.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							64.2		179.0
5800.953177.20.42724.40.01266.60.924178.6000.956177.00.40223.70.01468.90.928178.6200.957177.00.38323.20.01470.70.933177.6400.961176.90.36222.10.01570.90.937177.6600.957176.80.34421.30.01572.10.939177.6800.961176.50.32620.40.01672.00.936176.7000.962176.20.31119.50.01774.30.937176.7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8400.964174.70.23015.80.02275.10.946174.									178.8
6000.956177.00.40223.70.01468.90.928178.6200.957177.00.38323.20.01470.70.933177.6400.961176.90.36222.10.01570.90.937177.6600.957176.80.34421.30.01572.10.939177.6800.961176.50.32620.40.01672.00.936176.7000.962176.20.31119.50.01774.30.937176.7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8400.964174.70.23015.80.02275.10.946174.									178.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	600	0.956	177.0	0.402	23.7	0.014	68.9	0.928	178.2
6400.961176.90.36222.10.01570.90.937177.6600.957176.80.34421.30.01572.10.939177.6800.961176.50.32620.40.01672.00.936176.7000.962176.20.31119.50.01774.30.937176.7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.30.26917.50.01974.90.943175.7800.963175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	620				23.2			0.933	177.7
6800.961176.50.32620.40.01672.00.936176.7000.962176.20.31119.50.01774.30.937176.7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.30.26917.50.01974.90.943175.7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	640	0.961			22.1		70.9	0.937	177.3
6800.961176.50.32620.40.01672.00.936176.7000.962176.20.31119.50.01774.30.937176.7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.30.26917.50.01974.90.943175.7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	660	0.957	176.8	0.344	21.3	0.015	72.1	0.939	177.0
7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.30.26917.50.01974.90.943175.7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	680	0.961	176.5	0.326	20.4	0.016	72.0	0.936	176.7
7200.960176.00.29819.00.01874.20.937176.7400.962175.50.28318.60.01974.50.938175.7600.963175.30.26917.50.01974.90.943175.7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	700	0.962	176.2	0.311	19.5	0.017	74.3	0.937	176.4
7400.962175.50.28318.60.01974.50.938175.7600.963175.30.26917.50.01974.90.943175.7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	720	0.960	176.0	0.298		0.018	74.2	0.937	176.1
7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	740	0.962	175.5	0.283		0.019	74.5	0.938	175.8
7800.963175.20.25917.20.02074.10.944175.8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.	760	0.963							175.5
8000.964175.00.24716.90.02172.80.949174.8200.962175.00.23716.50.02275.40.946174.8400.964174.70.23015.80.02275.10.946174.									175.0
820 0.962 175.0 0.237 16.5 0.022 75.4 0.946 174. 840 0.964 174.7 0.230 15.8 0.022 75.1 0.946 174.	800	0.964						0.949	174.7
840 0.964 174.7 0.230 15.8 0.022 75.1 0.946 174.									174.7
									174.5
1 000 1 0.803 1 1/4.3 1 0.220 1 10.2 1 0.023 i 10.0 1 0.844 i 1/4.	860	0.965	174.5	0.220	16.2	0.023	76.0	0.944	174.1
									173.8
									173.4
									172.8
									172.7
									172.7
									172.6
									172.2

RD09MUP2

RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W

RD09MUP2 S-PARAMETER DATA (@Vdd=7.2V, Id=900mA)

Freq.	S	11	S	21	S12		S22		
[MHz]	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	
100	0.914	-176.9	4.363	78.5	0.012	0.2	0.825	-175.5	
120	0.918	-177.4	3.638	74.9	0.012	-0.6	0.833	-176.2	
140	0.920	-178.0	3.060	71.4	0.012	0.3	0.832	-177.1	
140	0.922	-178.3	2.614	68.8	0.011	1.6	0.829	-177.3	
180	0.921	-178.6	2.287	66.7	0.011	4.4	0.833	-177.4	
200	0.921	-178.8	2.039	64.6	0.010	6.5	0.846	-177.2	
220	0.922	-179.3	1.840	62.1	0.010	8.5	0.863	-177.4	
240	0.925	-179.4	1.665	59.6	0.010	8.0	0.870	-177.5	
260	0.924	-179.8	1.503	56.8	0.009	10.9	0.868	-177.9	
280	0.924	180.0	1.364	50.0 54.7	0.009	13.1	0.864	-178.2	
300	0.929	-180.0	1.240	52.9	0.009	18.6	0.860	-178.1	
320	0.936	180.0	1.144	52.5	0.009	26.6	0.866	-178.4	
340	0.935	179.8	1.064	49.4	0.009	27.8	0.879	-178.8	
360	0.936	179.4	0.993	47.2	0.009	32.4	0.891	-179.0	
380	0.930	179.4	0.993	45.2	0.009	34.4	0.896	-179.4	
400	0.937	178.9	0.851	43.5	0.009	40.1	0.896	-179.7	
420	0.939	178.5	0.795	41.7	0.009	47.0	0.895	-179.8	
440	0.933	178.5	0.738	40.4	0.009	52.8	0.892	-180.0	
460	0.944	178.3	0.696	39.3	0.009	50.3	0.898	179.6	
480	0.946	178.1	0.654	38.0	0.010	56.9	0.908	179.3	
500	0.948	178.0	0.619	36.5	0.011	59.5	0.912	178.8	
520	0.950	177.9	0.585	34.8	0.011	62.7	0.912	178.4	
540	0.949	177.5	0.549	33.5	0.012	63.1	0.915	178.1	
560	0.948	177.1	0.518	32.2	0.012	63.6	0.916	178.0	
580	0.950	177.0	0.491	31.1	0.014	65.6	0.918	177.8	
600	0.952	176.6	0.467	30.3	0.014	66.3	0.919	177.6	
620	0.954	176.5	0.444	29.5	0.014	67.6	0.924	177.0	
640	0.958	176.5	0.426	28.5	0.016	69.8	0.930	176.4	
660	0.954	176.4	0.400	27.2	0.017	69.8	0.932	176.3	
680	0.957	176.3	0.382	26.3	0.017	70.8	0.929	176.0	
700	0.956	176.0	0.367	25.6	0.018	71.9	0.929	175.9	
720	0.955	175.5	0.350	24.9	0.019	72.4	0.931	175.8	
740	0.956	175.2	0.334	23.9	0.019	72.5	0.930	175.3	
760	0.959	174.9	0.319	23.4	0.020	73.0	0.934	174.8	
780	0.958	175.0	0.308	22.3	0.020	72.7	0.939	174.5	
800	0.959	174.8	0.293	22.0	0.021	74.0	0.944	174.3	
820	0.962	174.8	0.281	21.5	0.021	73.9	0.939	174.1	
840	0.962	174.5	0.271	21.0	0.022	74.2	0.938	174.0	
860	0.961	174.3	0.261	20.4	0.023	74.1	0.939	173.9	
880	0.960	174.0	0.252	20.0	0.025	73.9	0.940	173.4	
900	0.961	173.6	0.244	19.5	0.025	74.6	0.942	173.0	
920	0.961	173.3	0.233	18.9	0.026	74.4	0.944	172.5	
940	0.960	173.3	0.225	18.5	0.027	74.7	0.945	172.3	
960	0.962	173.1	0.219	18.2	0.027	74.7	0.945	172.3	
980	0.962	172.9	0.210	17.5	0.029	74.3	0.948	172.4	
1000	0.960	172.8	0.206	18.0	0.029	74.4	0.948	172.0	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS Silicon RF Power Semiconductors

RD09MUP2

RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W

ATTENTION:

- 1.High Temperature ; This product might have a heat generation while operation,Please take notice that have a possibility to receive a burn to touch the operating product directly or touch the product until cold after switch off. At the near the product,do not place the combustible material that have possibilities to arise the fire.
- 2.Generation of High Frequency Power; This product generate a high frequency power. Please take notice that do not leakage the unnecessary electric wave and use this products without cause damage for human and property per normal operation.
- 3.Before use; Before use the product,Please design the equipment in consideration of the risk for human and electric wave obstacle for equipment.

PRECAUTIONS FOR THE USE OF MITSUBISHI SILICON RF POWER DEVICES:

- 1. The specifications of mention are not guarantee values in this data sheet. Please confirm additional details regarding operation of these products from the formal specification sheet. For copies of the formal specification sheets, please contact one of our sales offices.
- 2. RD series products (RF power transistors) are designed for consumer mobile communication terminals and were not specifically designed for use in other applications. In particular, while these products are highly reliable for their designed purpose, they are not manufactured under a quality assurance testing protocol that is sufficient to guarantee the level of reliability typically deemed necessary for critical communications elements. Examples of critical communications elements would include transmitters for base station applications and fixed station applications that operate with long term continuous transmission and a higher on-off frequency during transmitting, especially for systems that may have a high impact to society.
- 3. RD series products use MOSFET semiconductor technology. They are sensitive to ESD voltage therefore appropriate ESD precautions are required.
- 4. In the case of use in below than recommended frequency, there is possibility to occur that the device is deteriorated or destroyed due to the RF-swing exceed the breakdown voltage.
- 5. In order to maximize reliability of the equipment, it is better to keep the devices temperature low. It is recommended to utilize a sufficient sized heat-sink in conjunction with other cooling methods as needed (fan, etc.) to keep the channel temperature for RD series products lower than 120deg/C(in case of Tchmax=150deg/C) ,140deg/C(in case of Tchmax=175deg/C) under standard conditions.
- 6. Do not use the device at the exceeded the maximum rating condition. In case of plastic molded devices, the exceeded maximum rating condition may cause blowout, smoldering or catch fire of the molding resin due to extreme short current flow between the drain and the source of the device. These results causes in fire or injury.
- 7. For specific precautions regarding assembly of these products into the equipment, please refer to the supplementary items in the specification sheet.
- 8. Warranty for the product is void if the products protective cap (lid) is removed or if the product is modified in any way from it's original form.
- 9. For additional "Safety first" in your circuit design and notes regarding the materials, please refer the last page of this data sheet.
- 10. Please refer to the additional precautions in the formal specification sheet.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Silicon RF Power Semiconductors

DLING PRECAUTIONS RD09NUP2

RoHS Compliance, Silicon MOSFET Power Transistor, 520MHz, 8W

Keep safety first in your circuit designs !

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.