Features
* High Performance, Low Power AVR®32 UC 32-Bit Microcontroller
— Compact Single-Cycle RISC Instruction Set Including DSP Instruction Set
— Read-Modify-Write Instructions and Atomic Bit Manipulation
— Performing 1.49DMIPS/MHz
« Up to 91DMIPS Running at 66 MHz from Flash (1 Wait-State) _®

* Up to 54 DMIPS Running at 36 MHz from Flash (0 Wait-State)
— Memory Protection Unit

* Multi-Layer Bus System AVR®32
— High-Performance Data Transfers on Separate Buses for Increased Performance
— 8 Peripheral DMA Channels (PDCA) Improves Speed for Peripheral 32‘B It
Communication
— 4 generic DMA Channels for High Bandwidth Data Paths M | Croco ntI’O | | er

* Internal High-Speed Flash
— 256KBytes, 128KBytes, 64KBytes versions
— Single-Cycle Flash Access up to 36 MHz

— Prefetch Buffer Optimizing Instruction Execution at Maximum Speed AT32UC3A3256S

— 4ms Page I.Drogramming Time and 8ms FgII-Chip Er.a.se Time AT32UC3A3256

— 100,000 Write Cycles, 15-year Data Retention Capability

— Flash Security Locks and User Defined Configuration Area AT32UC3A3128S
* Internal High-Speed SRAM

— 64KBytes Single-Cycle Access at Full Speed, Connected to CPU Local Bus AT32UC3A3128

— 64KBytes on the Multi-Layer Bus System AT32UC3A364S
* Interrupt Controller AT32UC3A364

— Autovectored Low Latency Interrupt Service with Programmable Priority

* System Functions
— Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator . .
— Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL), Prel Imin al‘y
— Watchdog Timer, Real-Time Clock Timer

* External Memories
— Support SDRAM, SRAM, NandFlash (1-bit and 4-bit ECC), Compact Flash
— Up to 66 MHz

* External Storage device support

MultiMediaCard (MMC), Secure-Digital (SD), SDIO V1.1

CE-ATA, FastSD, SmartMedia, Compact Flash

Memory Stick: Standard Format V1.40, PRO Format V1.00, Micro

IDE Interface

* One Advanced Encryption System (AES) for AT32UC3A3256S, AT32UC3A3128S

and AT32UC3A364S

— 256-, 192-, 128-bit Key Algorithm, Compliant with FIPS PUB 197 Specifications
— Buffer Encryption/Decryption Capabilities

* Universal Serial Bus (USB)
— High-Speed USB (480Mbit/s) Device/MiniHost with On-The-Go (OTG)
— Flexible End-Point Configuration and Management with Dedicated DMA Channels
— On-Chip Transceivers Including Pull-Ups

* One 8-channel 10-bit Analog-To-Digital Converter, multiplexed with Digital 10s.

* Two Three-Channel 16-bit Timer/Counter (TC)

* Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— Independent Baudrate Generator, Support for SPI, IrDA and 1ISO7816 interfaces

ATMEL

Y 5

32072A-AVR32-03/09

— Support for Hardware Handshaking, RS485 Interfaces and Modem Line
* Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
* One Synchronous Serial Protocol Controller

— Supports 12S and Generic Frame-Based Protocols
* Two Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
* On-Chip Debug System (JTAG interface)

— Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
* 110 General Purpose Input/Output (GPIOs)

— Standard or High Speed mode

— Toggle capability: up to 66 MHz
* 144-pin TBGA and LQFP
* Single 3.3V Power Supply

AIMEL 2

32072A-AVR32-03/09 I ©

1. Description

32072A-AVR32-03/09

The AT32UC3A3 is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 66 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP instructions.

The AT32UC3A3 incorporates on-chip Flash and SRAM memories for secure and fast access.

The Peripheral Direct Memory Access Controller (PDCA) enables data transfers between
peripherals and memories without processor involvement. The PDCA drastically reduces pro-
cessing overhead when transferring continuous and large data streams.

The Direct Memory Access controller (DMACA) allows high bandwidth data flows between high
speed peripherals (USB, External Memories, MMC, SDIO, ...) and through high speed internal
features (AES, internal memories).

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Device includes two sets of three identical 16-bit Timer/Counter (TC) channels. Each chan-
nel can be independently programmed to perform frequency measurement, event counting,
interval measurement, pulse generation, delay timing and pulse width modulation. 16-bit chan-
nels are combined to operate as 32-bit channels.

The AT32UC3A3 also features many communication interfaces for communication intensive
applications like UART, SPI or TWI. Additionally, a flexible Synchronous Serial Controller (SSC)
and an USB are available.

The SSC provides easy access to serial communication protocols and audio standards like 12S.

The High-Speed (480MBit/s) USB 2.0 Device interface supports several USB Classes at the
same time thanks to the rich Endpoint configuration. The On-The-Go (OTG) Host interface
allows device like a USB Flash disk or a USB printer to be directly connected to the processor.

AT32UC3A3 integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

AIMEL 3

Y 5

2. Overview

2.1 Block Diagram

Figure 2-1. Block Diagram

TeK > <'L> LOCAL BUS e
<«———TD0O——— JTAG K #) WAV INTERFACE rAsTero
———Tb——| INTERFACE g

i
™S > NEXUS g
l¢————————MCKO———————
< M’\DAgl[éOO] CLS(S:% 2+ MEMORY PROTECTION UNIT. é 64 KB
I v SN INSTR DATA g SRAM
F— EVIIN——p]
<¢——EVIO N INTERFACE INTERFACE g
< VRG
— VBUS >
<« DH+,DL+ > USB HS
< DH-DL- o » INTERFACE o
— w
l€—vBOF—] T3 512/256/
DMA s M M M s 29| 128/64 KB
M sk 2&
w= FLASH
M 8
DMACA M
- HIGH SPEED <€—DATA[15..01
| BUS MATRIX s 5 |—ADDR23.01 >
<<
< o [——NCS[5.0—»
AES |z Y= NRD—|
< Q T |€«—NwAT

8 & 5 NWEO— |

= 32KB RAM | = mx S NWEL—)

w g s M E % [NWE3—

o) 32KB RAM | T =sa RAS—p

& o w Z CAS—p|

2 o 5 z SDA10—|

4 PB H HSB 5(‘ E 3 SDCK >

< § PERIPHERAL Z < £ ——SDCKE—|

= HSB-PB HSB-PB o = (——SDCS1:

& DMA xh< —>

u BRIDGE B BRIDGE A CONTROLLER w oS SOWE—>

w PB 52 —creer—»

o ¥ | CFCE2—»|

5 [a) CFRW—|
a \m/ ——NANDOE—p»|
€«—CLK MULTIMEDIA CARD ——NANDWE—
l¢«———cmpii.o— | & MEMORY STICK €——RXD-
o I
[E— —>| INTERFACE TXD——— P
4%’ pATAE- <:>] USARTL «———Clk——» & on
a l«——RTs,CTs——3p| =
5 1 €—DsR, DTR, DCD, R—3 452
o
INTERRUPT \,/l:> RXD & PX
CONTROLLER I USARTO XD/
<#> g USART2 «——clk——p| &
«—RTs, cTs——pf ¢
EXTINT[7..0—— EXTERNAL | | &
l€——Kps[7.0—— INTERRUPT <«——RXD &
NMI_N——| CONTROLLER <:::>8 USART3 I
[N
<« CLK———p
REAL TIME /l\,:"> |
COUNTER SERIAL € SCK———»
<#> Q |«——MISO, MOS—3
ol PERIPHERAL €« NPCSO—— 3
INTERFACE 0/1 NPCSE 1])
WATCHDOG
TIMER \’/l::> I € TX_CLOCK, TX_FRAME_SYNC)»
SYNCHRONOUS X DATA
§ SERIAL RX_CLOCK Rix FRAME_SYNC
115 kHz oweR CONTROLLER ~ [{werock mormme sme>
Rcosc MANAGER 1
F—xin32p 32 KHz 1) TWO-WIRE €—————SCL—— |
[XOUT32 K= a
CLOCK <:::> a INTERFACE 0/1 |€—————SDA————)|
GENERATOR
XN 55co K= |
ouTe CLOCK ANALOG TO <€————AD[7..0}
F—XIN1-)> CONTROLLER Q DIGITAL
0osc1 =) [ADVREF
xouTt K= CONVERTER |«
SLEEP
PLLO = CONTROLLER I
PLL1 K=> ° AUDIO - DATA[L.0F——>|
RESET <)::> g BITSTREAM DATANI[L..0}——|
RESET N |€«——GCLK[3.0——H CONTROLLER DAC
>
(€ ARO—» T)\ER NTER
le——BpR.o—> ICO:/?U <:::>
I CLKR2.O——>|

AIMEL 4

32072A-AVR32-03/09 I ©

3. Configuration Summary
The table below lists all AT32UC3A3 memory and package configurations:

Table 3-1. Memory and Package Configurations
Device Flash SRAM AES Package
AT32UC3A3256S 256KB 128KB Yes 144 balls TBGA/
144 lead LQFP
AT32UC3A3256 256KB 128KB No 144 balls TBGA/
144 lead LQFP
AT32UC3A3128S 128KB 128KB Yes 144 balls TBGA/
144 lead LQFP
AT32UC3A3128 128KB 128KB No 144 balls TBGA/
144 lead LQFP
AT32UC3A364S 64KB 128KB Yes 144 balls TBGA/
144 lead LQFP
AT32UC3A364 64KB 128KB No 144 balls TBGA/
144 lead LQFP

AIMEL 5

32072A-AVR32-03/09 I ©

4. Package and Pinout

4.1 Package

The device pins are multiplexed with peripheral functions as described in the Peripheral Multi-
plexing on I/O Line section.

Figure 4-1. TBGA144 Pinout (top view)

N
N
w
IN
ol
o
~
®
©
=
o
=
[EN
=
N

AL OO OO0OOO0OO0OO0OO0OO0OO0O0
B O OO OO0OO0OO0OO0OO0OO0OO0O0
ck OO0OO0OO0OOO0OO0OOO0O0O0O0
b OO OO0OO0OO0OOO0OO0OO0O0
EE OO OO0OO0OO0OO0OO0O0OO0OO0O0
FE OO O 0O0OO0OO0O0OO0O0OO0OO0O0
Gl OO O0OO0OO0OO0OOOO0OOO0O0
H O O OO O0OO0OO0OO0OO0OO0OO0O0
I OO0 0000000000
Kl OO0 O0O00OO0O0OO0OO0OO0O0
Ll OO O O0OO0OO0OO0OO0O0OO0OO0O0
M OO OO0OO0OO0OO0OO0OO0OO0OO0O0
Table 4-1. BGA144 Package Pinout A1..M8
1 2 3 4 5 6 7 8 9 10 11 12
A | PX40 | PBOO PA28 PA27 PBO3 PA29 PCO02 PCO04 PC05 DPHS DMHS USB_VBUS
USB_
g | PX10 | PBI11 PA31 PB02 VDDIO | PBO4 PCO3 vbDIO | o DMFS GNDPLL PA09
C | PX09 | PX35 GNDIO | PBO1 PX16 PX13 PA30 PBO8 DPFS GNDCORE | PAO8 PA10
D | PX08 | PX37 PX36 PX47 PX19 PX12 PB10 PAO2 PA26 PA11 PBO7 PBO6
E | PX38 | VDDIO | PX54 PX53 VDDIO | PX15 PB09 VDDIN | PA25 PAO7 VDDCORE | PA12
F | PX39 | PXo7 PX06 PX49 PX48 GNDIO | GNDIO | PA06 PAO4 PAO5 PA13 PA16
G | PX00 | PX05 PX59 PX50 PX51 GNDIO | GNDIO | PA23 PA24 PAO3 PAOO PAO1
H | PX01 | VvDDIO | PX58 PX57 VDDIO | PCO1 | PA17 VDDIO | PA21 PA22 VDDANA PB05
J | PX04 | PX02 PX34 PX56 PX55 PAL4 PA15 PA19 PA20 T™S TDO RESET_N
K | PX03 | Px44 GNDIO | PX46 PCO00 PX17 PX52 PA18 PX27 GNDIO PX29 TCK
L | PX11 | GNDIO | PX45 PX20 VDDIO | PX18 PX43 ONREG | PX26 PX28 GNDANA | TDI
M | PX22 | Px41 PX42 PX14 PX21 PX23 PX24 PX25 PX32 PX31 PX30 PX33

AIMEL 6

32072A-AVR32-03/09 I ©

Figure 4-2. LQFP144 Pinout
108 73
I I
109 = = 72
144 = o = 37
I I
1 36
Table 4-2. Package Pinout

1 USB_VBUS 37 PX10 73 PX20
2 VDDIO 38 PX35 74 PX46
3 USB_VBIAS 39 PX47 75 PX50
4 GNDIO 40 PX15 76 PX57
5 DMHS 41 PX48 77 PX51
6 DPHS 42 PX53 78 PX56
7 GNDIO 43 PX49 79 PX55
8 DMFS 44 PX36 80 PX21
9 DPFS 45 PX37 81 VDDIO
10 VDDIO 46 PX54 82 GNDIO
11 PBO8 47 GNDIO 83 PX17
12 PCO5 48 VDDIO 84 PX18
13 PCO04 49 PX09 85 PX23
14 PA30 50 PX08 86 PX24
15 PAO2 51 PX38 87 PX52
16 PB10 52 PX39 88 PX43
17 PBO09 53 PX06 89 PX27
18 PCO02 54 PX07 90 PX26
19 PCO3 55 PX00 91 PX28
20 GNDIO 56 PX59 92 PX25
21 VvDDIO 57 PX58 93 PX32
22 PBO4 58 PX05 94 PX29
23 PA29 59 PX01 95 PX33
24 PBO3 60 PX04 96 PX30
25 PBO02 61 PX34 97 PX31
26 PA27 62 PX02 98 PCO0

32072A-AVR32-03/09

ATMEL

Y 5

109 PA21
110 PA22
111 PA23
112 PA24
113 PA20
114 PA19
115 PA18
116 PA17
117 GNDANA
118 VDDANA
119 PA25
120 PA26
121 PBO5
122 PAOO
123 PAO1
124 PAO5
125 PAO3
126 PAO4
127 PAO6
128 PA16
129 PA13
130 VDDIO
131 GNDIO
132 PA12
133 PAO7
134 PB06

Table 4-2. Package Pinout
27 PBO1 63 PX03 99 PCO1 135 PBO7
28 PA28 64 VDDIO 100 PA14 136 PA11
29 PA31 65 GNDIO 101 PA15 137 PAOS
30 PBO00 66 PX44 102 GNDIO 138 PA10
31 PB11 67 PX11 103 VDDIO 139 PA09
32 PX16 68 PX14 104 T™S 140 GNDCORE
33 PX13 69 PX42 105 TDO 141 VDDCORE
34 PX12 70 PX45 106 RESET_N 142 VDDIN
35 PX19 71 PX41 107 TCK 143 ONREG
36 PX40 72 PX22 108 TDI 144 GNDPLL

4.2 Peripheral Multiplexing on I/O lines
Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C, or D. The following
table define how the I/O lines on the peripherals A, B, C, or D are multiplexed by the GPIO.
Table 4-3. GPIO Controller Function Multiplexing
BGA144 QFP144 PIN GPIO Pin Function A Function B Function C Function D

G11 122 PAOO GPIO 0 USARTO - RTS TCO - CLK1 SPI1 - NPCS[3]
G12 123 PAO1 GPIO 1 USARTO - CTS TCO-Al USART2 - RTS

D8 15 PAO2 GPIO 2 USARTO - CLK TCO-B1 SPIO0 - NPCS[0]

G10 125 PAO3 GPIO 3 USARTO - RXD EIC - EXTINT[4] DAC - DATA[0]

F9 126 PAO4 GPIO 4 USARTO - TXD EIC - EXTINT([5] DAC - DATANIO]

F10 124 PAO5 GPIO 5 USARTL - RXD TC1-CLKO USB - USB_ID

F8 127 PA06 GPIO 6 USARTL - TXD TC1-CLK1 USB - USB_VBOF

E10 133 PAO7 GPIO 7 SPIO0 - NPCS[3] DAC - DATANIO] USART1 - CLK

c1u1 137 PAO8 GPIO 8 SPIO - SCK DAC - DATA[(] TC1-B1

B12 139 PA09 GPIO 9 SPIO - NPCS[0] EIC - EXTINT([6] TC1-A1l

USB -

C12 138 PA10 GPIO 10 SPIO - MOSI USB_VBOF TC1-BO

D10 136 PA11 GPIO 11 SPIO - MISO USB - USB_ID TC1-A2

E12 132 PA12 GPIO 12 USARTL - CTS SPIO - NPCS[2] TC1-A0

F11 129 PA13 GPIO 13 USARTL1 - RTS SPIO - NPCS[1] EIC - EXTINT[7]]

TWIMSO -

J6 100 PA14 GPIO 14 SPIO - NPCS[1] TWALM TWIMS1 - TWCK

J7 101 PA15 GPIO 15 MCI - CMD[1] SPI1 - SCK TWIMS1 - TWD

F12 128 PA16 GPIO 16 MCI - DATA[11] SPI1 - MOSI TC1- CLK2

H7 116 PAL17 GPIO 17 MCI - DATA[10] SPI1 - NPCS[1] ADC - AD[7]

K8 115 PA18 GPIO 18 MCI - DATA[9] SPI1 - NPCS[2] ADC - ADI[6]

J8 114 PA19 GPIO 19 MCI - DATA[8] SPI1 - MISO ADC - AD[5]

ATMEL
Y 5

32072A-AVR32-03/09

Table 4-3. GPIO Controller Function Multiplexing
SSC -
RX_FRAME_SYN
Jo 113 PA20 GPIO 20 EIC - EXTINT[8] c ADC - AD[4]
H9 109 PA21 GPIO 21 ADC - AD[0] EIC - EXTINTI[O] USB - USB_ID
H10 110 PA22 GPIO 22 ADC - AD[1] EIC - EXTINT[1] | USB - USB_VBOF
G8 111 PA23 GPIO 23 ADC - AD[2] EIC - EXTINT[2] DAC - DATA[1]
G9 112 PA24 GPIO 24 ADC - AD[3] EIC - EXTINT[3] DAC - DATAN[1]
TWIMSL -
E9 119 PA25 GPIO 25 TWIMSO - TWD TWALM USART1 - DCD
D9 120 PA26 GPIO 26 TWIMSO - TWCK USART2 - CTS USART1 - DSR
A4 26 PA27 GPIO 27 MCI - CLK SSC - RX_DATA USART3 - RTS MSI - SCLK
SSC -
A3 28 PA28 GPIO 28 MCI - CMDI[0] RX_CLOCK USARTS3 - CTS MSI - BS
AB 23 PA29 GPIO 29 MCI - DATA[O] USART3 - TXD TCO - CLKO MSI - DATA[0]
DMACA -
c7 14 PA30 GPIO 30 MCI - DATA[1] USART3 - CLK DMAACK[0] MSI - DATA[1]
DMACA -
B3 29 PA31 GPIO 31 MCI - DATA[2] USART2 - RXD DMARQI0] MSI - DATA[2]
A2 30 PB00 GPIO 32 MCI - DATA[3] USART2 - TXD ADC - TRIGGER MSI - DATA[3]
c4 27 PBO1 GPIO 33 MCI - DATA[4] DAC - DATA[1] EIC - SCAN[0] MSI - INS
B4 25 PB02 GPIO 34 MCI - DATA[5] DAC - DATAN[1] EIC - SCAN[1]
A5 24 PB03 GPIO 35 MCI - DATA[6] USART2 - CLK EIC - SCAN[2]
B6 22 PB04 GPIO 36 MCI - DATA[7] USART3 - RXD EIC - SCAN[3]
H12 121 PB05 GPIO 37 USB - USB_ID TCO- A0 EIC - SCAN[4]
USB -
D12 134 PB06 GPIO 38 USB_VBOF TCO - BO EIC - SCAN[5]
SSC -
D11 135 PBO7 GPIO 39 SPI1 - SCK TX_CLOCK EIC - SCAN[6]
cs8 11 PB08 GPIO 40 SPI1 - MISO SSC - TX_DATA EIC - SCAN[7]
E7 17 PB09 GPIO 41 SPI1 - NPCS[0] SSC - RX_DATA EBI - NCS[4]
SSC -
RX_FRAME_SYN
D7 16 PB10 GPIO 42 SPI1 - MOSI c EBI - NCS[5]
SSC -
TX_FRAME_SYN
B2 31 PB11 GPIO 43 USART1 - RXD c PM - GCLK[1]
K5 98 PCO00 GPIO 45
H6 99 PCO1 GPIO 46
A7 18 PC02 GPIO 47
B7 19 PCO03 GPIO 48
A8 13 PC04 GPIO 49
A9 12 PCO5 GPIO 50
G1 55 PX00 GPIO 51 EBI - DATA[10] USARTO - RXD USART1 - RI
H1 59 PX01 GPIO 52 EBI - DATA[9] USARTO - TXD USART1 - DTR
32072A-AVR32-03/09 —©

Table 4-3. GPIO Controller Function Multiplexing
J2 62 PX02 GPIO 53 EBI - DATA[8] USARTO - CTS PM - GCLK]0]
K1 63 PX03 GPIO 54 EBI - DATA[7] USARTO - RTS
J1 60 PX04 GPIO 55 EBI - DATA[6] USARTL - RXD
G2 58 PX05 GPIO 56 EBI - DATA[5] USART1 - TXD
F3 53 PX06 GPIO 57 EBI - DATA[4] USART1 - CTS
F2 54 PX07 GPIO 58 EBI - DATA[3] USARTL - RTS
D1 50 PX08 GPIO 59 EBI - DATA[2] USART3 - RXD
c1l 49 PX09 GPIO 60 EBI - DATA[1] USART3 - TXD
B1 37 PX10 GPIO 61 EBI - DATA[0] USART2 - RXD
L1 67 PX11 GPIO 62 EBI - NWE1 USART2 - TXD
D6 34 PX12 GPIO 63 EBI - NWEO USART2 - CTS
C6 33 PX13 GPIO 64 EBI - NRD USART2 - RTS
M4 68 PX14 GPIO 65 EBI - NCS[1] TCO - A0
E6 40 PX15 GPIO 66 EBI - ADDR[19] USART3 - RTS TCO-BO
C5 32 PX16 GPIO 67 EBI - ADDR[18] USART3-CTS TCO-A1l
DMACA -
K6 83 PX17 GPIO 68 EBI - ADDR[17] DMARQJ[1] TCO-B1
DMACA -
L6 84 PX18 GPIO 69 EBI - ADDRJ[16] DMAACK]1] TCO- A2
D5 35 PX19 GPIO 70 EBI - ADDR[15] EIC - SCAN[O0] TCO-B2
L4 73 PX20 GPIO 71 EBI - ADDR[14] EIC - SCAN[1] TCO - CLKO
M5 80 PX21 GPIO 72 EBI - ADDRJ[13] EIC - SCAN[2] TCO - CLK1
M1 72 PX22 GPIO 73 EBI - ADDR[12] EIC - SCAN[3] TCO - CLK2
M6 85 PX23 GPIO 74 EBI - ADDR[11] EIC - SCAN[4] SSC - TX_CLOCK
M7 86 PX24 GPIO 75 EBI - ADDRJ[10] EIC - SCAN[5] SSC - TX_DATA
M8 92 PX25 GPIO 76 EBI - ADDRI[9] EIC - SCAN[6] SSC - RX_DATA
SSC -
RX_FRAME_SYN
L9 90 PX26 GPIO 77 EBI - ADDR[8] EIC - SCAN[7] c
SSC -
K9 89 PX27 GPIO 78 EBI - ADDRJ[7] SPIO - MISO TX_FRAME_SYNC
L10 91 PX28 GPIO 79 EBI - ADDRI[6] SPIO - MOSI SSC - RX_CLOCK
K11 94 PX29 GPIO 80 EBI - ADDRJ[5] SPIO - SCK
M11 96 PX30 GPIO 81 EBI - ADDR[4] SPIO - NPCS[0]
M10 97 PX31 GPIO 82 EBI - ADDR[3] SPIO - NPCS[1]
M9 93 PX32 GPIO 83 EBI - ADDR[2] SPIO - NPCS[2]
M12 95 PX33 GPIO 84 EBI - ADDRJ[1] SPIO - NPCS[3]
J3 61 PX34 GPIO 85 EBI - ADDRI[0] SPI1 - MISO PM - GCLKI[0]
c2 38 PX35 GPIO 86 EBI - DATA[15] SPI1 - MOSI PM - GCLK][1]
D3 44 PX36 GPIO 87 EBI - DATA[14] SPI1 - SCK PM - GCLK][2]
D2 45 PX37 GPIO 88 EBI - DATA[13] SPI1 - NPCS[0] PM - GCLKI[3]

32072A-AVR32-03/09

ATMEL

Y 5

10

Table 4-3. GPIO Controller Function Multiplexing

E1 51 PX38 GPIO 89 EBI - DATA[12] SPI1 - NPCS[1] USART1 - DCD

F1 52 PX39 GPIO 90 EBI - DATA[11] SPI1 - NPCS[2] USART1 - DSR

Al 36 PX40 GPIO 91 EBI - SDCS

M2 71 PX41 GPIO 92 EBI - CAS

M3 69 PX42 GPIO 93 EBI- RAS

L7 88 PX43 GPIO 94 EBI - SDA10 USART1 - RI

K2 66 PX44 GPIO 95 EBI - SDWE USART1 - DTR

L3 70 PX45 GPIO 96 EBI - SDCK

K4 74 PX46 GPIO 97 EBI - SDCKE

D4 39 PX47 GPIO 98 EBI - NANDOE ADC - TRIGGER MCI - DATA[11]

USB -

F5 41 PX48 GPIO 99 EBI - ADDR[23] USB_VBOF MCI - DATA[10]

F4 43 PX49 GPIO 100 EBI - CFRNW USB - USB_ID MCI - DATA[9]

G4 75 PX50 GPIO 101 EBI - CFCE2 TC1-B2 MCI - DATA[8]

DMACA -
G5 77 PX51 GPIO 102 EBI - CFCE1 DMAACK]0] MCI - DATA[15]
DMACA -

K7 87 PX52 GPIO 103 EBI - NCS[3] DMARQ[O0] MCI - DATA[14]

E4 42 PX53 GPIO 104 EBI - NCS[2] MCI - DATA[13]

E3 46 PX54 GPIO 105 EBI - NWAIT USART3 - TXD MCI - DATA[12]

J5 79 PX55 GPIO 106 EBI - ADDR[22] EIC - SCAN[3] USART2 - RXD

Ja 78 PX56 GPIO 107 EBI - ADDR[21] EIC - SCAN[2] USART2 - TXD

H4 76 PX57 GPIO 108 EBI - ADDR[20] EIC - SCAN[1] USART3 - RXD

H3 57 PX58 GPIO 109 EBI - NCS[O0] EIC - SCAN[0] USART3 - TXD

G3 56 PX59 GPIO 110 EBI - NANDWE MCI - CMDI[1]

4.2.1 Oscillator Pinout
Table 4-4. Oscillator Pinout

pin pin Pad Oscillator pin
A7 18 PCO02 Xin0
A8 13 PCO04 xinl
K5 98 PCO00 Xin32
B7 19 PCO03 xout0
A9 12 PCO05 xoutl
H6 99 PCO1 xout32

Alm l 11

32072A-AVR32-03/09 I ©

4.3 Signal Descriptions
The following table gives details on signal name classified by peripheral.

Table 4-5. Signal Description List
Active
Signal Name Function Type Level Comments
Power

VDDIO 1/0 Power Supply Power 3.0to 3.6V
VDDANA Analog Power Supply Power 3.0to 3.6V
VDDIN Voltage Regulator Input Supply Power 2.7to0 3.6V
ONREG Voltage Regulator ON/OFF ggmfgl 1 271036V
VDDCORE Voltage Regulator Output for Digital Supply gﬁ\tl\[l)eurt 1.65t01.95V
GNDANA Analog Ground Ground
GNDIO I/O Ground Ground
GNDCORE Dlgital Ground Ground
GNDPLL PLL Ground Ground

Clocks, Oscillators, and PLL's
XINO, XIN1, XIN32 Crystal 0, 1, 32 Input Analog
igﬂg,zxoun, Crystal 0, 1, 32 Output Analog

JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
Auxiliary Port - AUX

MCKO Trace Data Output Clock Output
MDOI5:0] Trace Data Output Output
MSEQ[1:0] Trace Frame Control Output
EVTI_N Event In Output Low
EVTO_N Event Out Output Low

Power Manager - PM

32072A-AVR32-03/09

ATMEL

Y 5

12

Table 4-5. Signal Description List
Active
Signal Name Function Type Level Comments
GCLK][2:0] Generic Clock Pins Output
RESET_N Reset Pin Input Low
DMA Controller - DMACA (optional)

DMAACK]J1:0] DMA Acknowledge Output
DMARQ[1:0] DMA Requests Input

External Interrupt Module - EIM
EXTINT[7:0] External Interrupt Pins Input
KPS0 - KPS7 Keypad Scan Pins Output
NMI_N Non-Maskable Interrupt Pin Input Low

General Purpose Input/Output pin - GPIOA, GPIOB, GPIOC, GPIOX
PA[31:0] Parallel 1/0O Controller GPIO port A I/1O
PB[11:0] Parallel 1/0O Controller GPIO port B I/0
PCI[5:0] Parallel 1/0O Controller GPIO port C 110
PX[59:0] Parallel 1/0O Controller GPIO port X I/0
External Bus Interface - EBI

ADDR[23:0] Address Bus Output
CAS Column Signal Output Low
CFCE1 Compact Flash 1 Chip Enable Output Low
CFCE2 Compact Flash 2 Chip Enable Output Low
CFRNW Compact Flash Read Not Write Output
DATA[15:0] Data Bus 1/0
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NCS[5:0] Chip Select Output Low
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable O Output Low
NWE1 Write Enable 1 Output Low

32072A-AVR32-03/09

ATMEL

Y 5

13

Table 4-5. Signal Description List
Active
Signal Name Function Type Level Comments
RAS Row Signal Output Low
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDCS SDRAM Chip Select Output Low
SDWE SDRAM Write Enable Output Low
MultiMedia Card Interface - MCI
CLK Multimedia Card Clock Output
CMD[1:0] Multimedia Card Command 110
DATA[15:0] Multimedia Card Data I/O
Serial Peripheral Interface - SPI0
MISO Master In Slave Out I/0
MOSI Master Out Slave In 110
NPCS[3:0] SPI Peripheral Chip Select 1/0 Low
SCK Clock Output
Synchronous Serial Controller - SSC
RX_CLOCK SSC Receive Clock I/0
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/0
TX_CLOCK SSC Transmit Clock I/0
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync I/O

Timer/Counter - TCO, TC1

AO Channel O Line A /0
Al Channel 1 Line A /0
A2 Channel 2 Line A /0
BO Channel O Line B /0
B1 Channel 1 Line B /0

32072A-AVR32-03/09

ATMEL

Y 5

14

Table 4-5. Signal Description List

Active
Signal Name Function Type Level Comments
B2 Channel 2 Line B /0
CLKO Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input

Two-wire Interface - TWIO, TWI1

SCL Serial Clock 110

SDA Serial Data 110

Universal Synchronous Asynchronous Receiver Transmitter - USARTO, USART1, USART2, USART3

CLK Clock 110

CTS Clear To Send Input

DCD Data Carrier Detect Only USART1
DSR Data Set Ready Only USART1
DTR Data Terminal Ready Only USART1
RI Ring Indicator Only USART1
RTS Request To Send Output

RXD Receive Data Input

RXDN Inverted Receive Data Input Low

TXD Transmit Data Output

TXDN Inverted Transmit Data Output Low

Analog to Digital Converter - ADC

ADO - AD7 Analog input pins P;rr}zluotg

Audio Bitstream DAC (ABDAC)
DATAO-DATA1 D/A Data out Output
DATANO-DATAN1 D/A Data inverted out Output

Universal Serial Bus Device - USB

FSDM USB Full Speed Data - Analog
FSDP USB Full Speed Data + Analog
HSDM USB High Speed Data - Analog

AIMEL 15

32072A-AVR32-03/09 I ©

Table 4-5. Signal Description List

Active
Signal Name Function Type Level Comments
HSDP USB High Speed Data + Analog
Connect to the ground through a
USB_VBIAS USB VBIAS reference Analog 6810 ohms (+/- 0.5%) resistor
USB_VBUS USB VBUS for OTG feature Output

43.1 JTAG Pins

TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has
no pull-up resistor.

432 RESET_N Pin
The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

4.3.3 TWI Pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike filtering. When used as GPIO pins or used for other peripherals, the
pins have the same characteristics as other GPIO pins.

4.3.4 GPIO Pins
All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each 1/O line through the I/O Controller. After reset, I/O lines default
as inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset
State” of the 1/0 Controller multiplexing tables.

AIMEL 16

32072A-AVR32-03/09 I ©

4.4 Power Considerations

44.1 Power Supplies
The AT32UC3A3 has several types of power supply pins:

* VDDIO: Powers I/O lines. Voltage is 3.3V nominal

* VDDANA: Powers the ADC Voltage and provides the ADVREF voltage is 3.3V nominal

* VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal

* VDDCORE: Output voltage from regulator for filtering purpose and provides the supply to the
core, memories, and peripherals. Voltage is 1.8V nominal

The ground pins GNDCORE are common to VDDCORE and VDDIN. The ground pin for

VDDANA is GNDANA. The ground pin for VDDIO is GNDIO.

Refer to Electrical Characteristics chapter for power consumption on the various supply pins.

4.4.2 Voltage Regulator

The AT32UC3A3 embeds a voltage regulator that converts from 3.3V to 1.8V with a load of up
to 100 mA. The regulator takes its input voltage from VDDIN, and supplies the output voltage on
VDDCORE and powers the core, memories and peripherals.

Adequate output supply decoupling is mandatory for VDDCORE to reduce ripple and avoid
oscillations.

The best way to achieve this is to use two capacitors in parallel between VDDCORE and
GNDCORE:

* One external 470pF (or 1nF) NPO capacitor (CouT1) should be connected as close to the
chip as possible.
« One external 2.2 uF (or 3.3uF) X7R capacitor (CouT2).
Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop.

The input decoupling capacitor should be placed close to the chip, e.g., two capacitors can be
used in parallel (100nF NPO and 4.7 uF X7R).

33vm T T »[X] VDDIN--------- v

CINZ j”_ j”_ CINl ONREG - 1 8V ______
X’—’ Regulator

LTI LLLLY,

"
»
]
u
]
]
u
]
u
]
—
]
u
u
]
]
u
]
u
]

1.8V m VDDCORE «-----

COUT2 J_ J_ COUTl
A

ONREG input must be tied to VDDIN.

AIMEL 17

32072A-AVR32-03/09 I ©

5. Processor and Architecture

5.1

5.2

Features

32072A-AVR32-03/09

Rev: 1.4.2.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

e 32-bit load/store AVR32A RISC architecture
15 general-purpose 32-bit registers
32-bit Stack Pointer, Program Counter and Link Register reside in register file
Fully orthogonal instruction set
Privileged and unprivileged modes enabling efficient and secure Operating Systems
— Innovative instruction set together with variable instruction length ensuring industry leading
code density
— DSP extention with saturating arithmetic, and a wide variety of multiply instructions
* 3-stage pipeline allows one instruction per clock cycle for most instructions
— Byte, halfword, word and double word memory access
— Multiple interrupt priority levels
* MPU allows for operating systems with memory protection

AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and halfword data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, halfword, word, and double word data
with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

AIMEL 18

Y 5

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

5.3 The AVR32UC CPU

32072A-AVR32-03/09

The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the Memories
chapter of this data sheet.

Figure 5-1 on page 20 displays the contents of AVR32UC.

AIMEL 19

Y 5

Figure 5-1. Overview of the AVR32UC CPU

=

OCD interface

OCD
system

Interrupt controller interface

Reset interface

Power/
Reset
control

AVR32UC CPU pipeline

5.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic

32072A-AVR32-03/09

(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

| MPU
A
Instruction memory controller Data memory controller
High -
S Sed High CPU Local
High Speed Bus master Igus Speed Bus
Bus slave master 8
master 8
8
3 g g 9 =
@ @ @ a g
o o =] —_ I
(9]] [o) [+
7]) Q Q ©
=3 o Q| o L
0) 0 - 8
o = N o}
5 5 k=) o
T T T (]

(

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 5-2 on page 21 shows an overview of the AVR32UC pipeline stages.

ATMEL

Y 5

20

Figure 5-2. The AVR32UC Pipeline

—{ MUL > Multiply unit
F D Regfile »| ALU p| Redfie ALU unit
Read w rite
Prefetch unit | Decode unit |—
Y
o Load-store
’ LS o unit

5.3.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications like smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

5.3.3 Java Support
AVR32UC does not provide Java hardware acceleration.

5.3.4 Memory Protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

5.3.5 Unaligned Reference Handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and Id.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

AIMEL 21

32072A-AVR32-03/09 I ©

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

Table 5-1. Instructions with Unaligned Reference Support
Instruction Supported alignment
Id.d Word
st.d Word
5.3.6 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

« All SIMD instructions
« All coprocessor instructions if no coprocessors are present

« retj, incjosp, popjc, pushjc
« tlbr, tibs, tlbw

* cache

5.3.7 CPU and Architecture Revision
Three major revisions of the AVR32UC CPU currently exist. The device described in this
datasheet uses CPU revision 3.

32072A-AVR32-03/09

The Architecture Revision field in the CONFIGO system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

ATMEL

Y 5

22

5.4 Programming Model

54.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 5-3. The AVR32UC Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI Secure
Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 BitO Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0
PC PC | PC PC PC PC PC PC \ PC
LR LR LR LR LR LR LR LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SEC

R12 R12 R12 R12 R12 R12 R12 R12 R12
R11 R11 R11 R11 R11 R11 R11 R11 R11
R10 R10 R10 R10 R10 R10 R10 R10 R10
R9 R9 R9 R9 R9 R9 R9 R9 R9
R8 R8 R8 R8 R8 R8 R8 R8 R8
R7 R7 R7 R7 R7 R7 R7 R7 R7
R6 R6 R6 R6 R6 R6 R6 R6 R6
R5 RS RS RS RS RS R5 R5 RS
R4 R4 R4 R4 R4 R4 R4 R4 R4
R3 R3 R3 R3 R3 R3 R3 R3 R3
R2 R2 R2 R2 R2 R2 R2 R2 R2
R1 R1 R1 R1 R1 R1 R1 R1 R1
RO RO RO RO RO RO RO RO RO
SR | SR | SR | SR | SR | SR | SR | SR | SR

SS_STATUS

SS_ADRF

SS_ADRR

SS_ADRO

SS_ADR1

SS_SP_SYS

SS_SP_APP

SS_RAR

SS_RSR

5.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 5-4 on
page 23 and Figure 5-5 on page 24. The lower word contains the C, Z, N, V, and Q condition
code flags and the R, T, and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 5-4. The Status Register High Halfword

Bit 31 Bit 16

SS - - - DM | D - M2 | M1 | MO | EM | I3M | I2M | I1M | IOM | GM | Bit name

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 |Initial value
Y |—> Global Interrupt Mask

L—— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask

Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Reserved

Secure State

AIMEL 23

32072A-AVR32-03/09 I ©

YYYYYYYYYYY {

AT32UC3A3

Figure 5-5. The Status Register Low Halfword

Bit 15 Bit0

ST - - - - - - - - | LI Q|V |N|Z| C |Bitname

o,o0j0|0|0| 0|]0O0O|O|0O0O]|]O|0O0|0|0)| 0] 0]/ O [Initialvalue

|—> Carry
L——» Zero
L » Sign
» Overflow
» Saturation
» Lock
» Reserved
» Scratch
» Reserved
54.3 Processor States
5.4.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 5-2 on
page 24.
Table 5-2. Overview of Execution Modes, their Priorities and Privilege Levels.
Priority Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

5.4.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

AIMEL 24

32072A-AVR32-03/09 I ©

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

5.4.4 System Registers

32072A-AVR32-03/09

The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 5-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INTO Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVYR32UC

11 44 RSR_NMI Unused in AVYR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INTO Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LVO Unused in AVYR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC
ATET -
Y 5

Table 5-3. System Registers (Continued)

Reg # Address Name Function

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVYR32UC

28 112 JAVA_LV5 Unused in AVYR32UC

29 116 JAVA_LV6 Unused in AVYR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIGO Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVYR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNTO Unused in AVR32UC

77 308 PCNT1 Unused in AVYR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUARO MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUARS3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUARS5 MPU Address Register region 5

86 344 MPUARG MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSRO MPU Privilege Select Register region 0
89 356 MPUPSR1 MPU Privilege Select Register region 1
90 360 MPUPSR2 MPU Privilege Select Register region 2
91 364 MPUPSR3 MPU Privilege Select Register region 3

AIMEL 26

32072A-AVR32-03/09 I ©

Table 5-3. System Registers (Continued)
Reg # Address Name Function
92 368 MPUPSR4 MPU Privilege Select Register region 4
93 372 MPUPSR5 MPU Privilege Select Register region 5
94 376 MPUPSR6 MPU Privilege Select Register region 6
95 380 MPUPSR7 MPU Privilege Select Register region 7
96 384 MPUCRA Unused in this version of AVR32UC
97 388 MPUCRB Unused in this version of AVR32UC
98 392 MPUBRA Unused in this version of AVR32UC
99 396 MPUBRB Unused in this version of AVR32UC
100 400 MPUAPRA MPU Access Permission Register A
101 404 MPUAPRB MPU Access Permission Register B
102 408 MPUCR MPU Control Register
103 412 SS_STATUS Secure State Status Register
104 416 SS_ADRF Secure State Address Flash Register
105 420 SS_ADRR Secure State Address RAM Register
106 424 SS_ADRO Secure State Address 0 Register
107 428 SS_ADR1 Secure State Address 1 Register
108 432 SS_SP_SYS Secure State Stack Pointer System Register
109 436 SS_SP_APP Secure State Stack Pointer Application Register
110 440 SS_RAR Secure State Return Address Register
111 444 SS_RSR Secure State Return Status Register
112-191 448-764 Reserved Reserved for future use
192-255 768-1020 IMPL IMPLEMENTATION DEFINED

5.5 Exceptions and Interrupts

AVR32UC incorporates a powerful exception handling scheme. The different exception sources,
like lllegal Op-code and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple exceptions are received simultaneously. Additionally, pending
exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-
ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 5-4 on page 30. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-
ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as
(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception

AIMEL 27

Y 5

32072A-AVR32-03/09

55.1

5.5.2

553

code segments must be set up appropriately. The same mechanisms are used to service all dif-
ferent types of events, including external interrupt requests, yielding a uniform event handling
scheme.

An interrupt controller does the priority handling of the external interrupts and provides the
autovector offset to the CPU.

System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1.

The pending event will not be accepted if it is masked. The I3M, 12M, 11M, 10M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INTO, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 5-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INTO, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of

32072A-AVR32-03/09

ATMEL

Y 5

28

code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

5.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, Debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

5.5.5 Entry Points for Events
Several different event handler entry points exists. In AVR32UC, the reset address is
0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 5-4. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 5-4. Some of the excep-
tions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

AIMEL 29

32072A-AVR32-03/09 I ©

Table 5-4. Priority and Handler Addresses for Events
Priority | Handler Address Name Event source Stored Return Address
1 0x8000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit MPU
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address CPU PC of offending instruction
13 EVBA+0x50 ITLB Miss MPU
14 EVBA+0x18 ITLB Protection MPU PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point UNUSED
20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction
23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) MPU
25 EVBA+0x70 DTLB Miss (Write) MPU
26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction
28 EVBA+0x44 DTLB Modified UNUSED

32072A-AVR32-03/09

ATMEL

Y 5

30

6. Memories

6.1 Embedded Memories
* Internal High-Speed Flash
— 256KBytes (AT32UC3A3256/S)
— 128Kbytes (AT32UC3A3128/S)
— 64Kbytes (AT32UC3A364/S)
« 0 wait state access at up to 36 MHz in worst case conditions
« 1 wait state access at up to 66 MHz in <orst case conditions
« Pipelined Flash architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
 Pipelined Flash architecture typically reduces the cycle penalty of 1 wait state operation
to only 15% compared to 0 wait state operation
« 100 000 write cycles, 15-year data retention capability
« Sector lock capabilities, Bootloader protection, Security Bit
« 32 fuses, preserved during Chip Erase
» User page for data to be preserved during Chip Erase
¢ Internal High-Speed SRAM
— 64KBytes, Single-cycle access at full speed on CPU Local Bus and accessible through the
High Speed Bud (HSB) matrix
— 2x32KBytes, accessible independently through the High Speed Bud (HSB) matrix

6.2 Physical Memory Map

The System Bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot.

Note that AVR32UC CPU uses unsegmented translation, as described in the AVR32 Architec-
ture Manual.

The 32-bit physical address space is mapped as follows:

Table 6-1. AT32UC3A3 Physical Memory Map

Size Size Size
Device ifﬁ;,t.ess AT32UC3A325 | AT32UC3A312 | AT32UC3A36

6 8 4
Embedded CPU SRAM 0x00000000 | 64KByte 64KByte 64KByte
Embedded Flash 0x80000000 | 256KByte 128KByte 64 KByte
EBI SRAM CSO 0xC0000000 | 16MByte 16MByte 16 MByte
EBI SRAM CS2 0xC8000000 | 16MByte 16MByte 16 MByte
EBI SRAM CS3 0xCC000000 | 16MByte 16MByte 16 MByte
EBI SRAM CS4 0xD8000000 | 16MByte 16MByte 16 MByte
EBI SRAM CS5 0xDCO000000 | 16MByte 16MByte 16MByte
EBI SRAM CS1/SDRAM CS0 | 0xD0O000000 | 128 MByte 128 MByte 128 MByte
USB Data 0XE0000000 | 64KByte 64KByte 64KByte
Embedded System SRAM 0 O0xFFO00000 | 32KByte 32KByte 32KByte

AIMEL 31

32072A-AVR32-03/09 I ©

Table 6-1. AT32UC3A3 Physical Memory Map
Size Size Size
Devi Start
evice Address AT32UC3A325 | AT32UC3A312 | AT32UC3A36
6 8 4
Embedded System SRAM 1 OxFF008000 | 32KByte 32KByte 32KByte
HSB-PB Bridge A OXFFFF0000 | 64KByte 64KByte 64KByte
HSB-PB Bridge B OXFFFEOO00 | 64KByte 64KByte 64KByte
6.3 Peripheral Address Map
Table 6-2. Peripheral Address Mapping
Address Peripheral Name Bus
0xFF100000
DMACA DMA Controller - DMACA
0xFF200000
RESERVED
OxFFFD0000 _
AES Advanced Encryption Standard - AES
OxFFFEO000
USB USB 2.0 OTG Interface - USB
OxFFFE1000
HMATRIX HSB Matrix - HMATRIX
OxFFFE1400
FLASHC Flash Controller - FLASHC
OXFFFE1C00)
SMC Static Memory Controller - SMC
OxFFFE2000
SDRAMC SDRAM Controller - SDRAMC
OxFFFE2400 Error code corrector Hamming and Reed Solomon -
ECCHRS ECCHRS
OxFFFE2800)
BUSMON Bus Monitor module - BUSMON
OxFFFE4000
MCI Mulitmedia Card Interface - MCI
OxFFFE8000
MSI Memory Stick Interface - MSI
OxFFFF0000 ,
PDMA Peripheral DMA Controller - PDMA
OxFFFF0800
INTC Interrupt controller - INTC

AIMEL 32

32072A-AVR32-03/09 I ©

Table 6-2. Peripheral Address Mapping

OxFFFFOCO00
PM Power Manager - PM
0xFFFFODO00 .
RTC Real Time Counter - RTC
OxFFFFOD30 _
WDT Watchdog Timer - WDT
OxFFFFOD80
EIC External Interrupt Controller - EIC
OxFFFF1000
GPIO General Purpose Input/Output Controller - GPIO
OxFFFF1400 i
USARTO Unlve_rsal Synchrpnous/Asynchronous
Receiver/Transmitter - USARTO
OxFFFF1800 USART1 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART1
OxFFFF1C00 USART?2 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART2
OxFFFF2000 i
USART3 Unlve_rsal Synchrpnous/Asynchronous
Receiver/Transmitter - USART3
OxFFFF2400))
SPIO Serial Peripheral Interface - SPI0
OxFFFF2800))
SPI1 Serial Peripheral Interface - SPI1
OxFFFF2C00 .
TWIMO Two-wire Master Interface - TWIMO
OXFFFF3000)
TWIM1 Two-wire Master Interface - TWIM1
OxFFFF3400)
SSC Synchronous Serial Controller - SSC
OxFFFF3800)
TCO Timer/Counter - TCO
OxFFFF3C00 o
ADC Analog to Digital Converter - ADC
OxFFFF4000 o
DAC Audio Bitstream DAC - DAC
OxFFFF4400)
TC1 Timer/Counter - TC1
OxFFFF4800
RESERVED

AIMEL 33

32072A-AVR32-03/09 I ©

Table 6-2. Peripheral Address Mapping

OxFFFF4c00
RESERVED
OxFFFF5000 .
TWISO Two-wire Slave Interface - TWISO
OxFFFF5400
TWIS1 Two-wire Slave Interface - TWIS1

6.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

The following GPIO registers are mapped on the local bus:

Table 6-3. Local Bus Mapped GPIO Registers

Local Bus

Port Register Mode Address Access
A Output Driver Enable Register (ODER) WRITE 0x40000040 Write-only
SET 0x40000044 Write-only
CLEAR 0x40000048 Write-only
TOGGLE 0x4000004C Write-only
Output Value Register (OVR) WRITE 0x40000050 Write-only
SET 0x40000054 Write-only
CLEAR 0x40000058 Write-only
TOGGLE 0x4000005C Write-only
Pin Value Register (PVR) - 0x40000060 Read-only
B Output Driver Enable Register (ODER) WRITE 0x40000240 Write-only
SET 0x40000244 Write-only
CLEAR 0x40000248 Write-only
TOGGLE 0x4000024C Write-only
Output Value Register (OVR) WRITE 0x40000250 Write-only
SET 0x40000254 Write-only
CLEAR 0x40000258 Write-only
TOGGLE 0x4000025C Write-only
Pin Value Register (PVR) - 0x40000260 Read-only

AIMEL 34

32072A-AVR32-03/09 I ©

7. Boot Sequence

This chapter summarizes the boot sequence of the AT32UC3A3. The behavior after power-up is
controlled by the Power Manager. For specific details, refer to Section 8. "Power Manager (PM)”
on page 36.

7.1 Starting of Clocks

After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the
power has stabilized throughout the device. Once the power has stabilized, the device will use
the internal RC Oscillator as clock source.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system receives a clock with the same frequency as the
internal RC Oscillator.

7.2 Fetching of Initial Instructions

After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

AIMEL 35

32072A-AVR32-03/09 I ©

8. Power Manager (PM)
Rev: 2.3.1.0

8.1 Features
* Controls integrated oscillators and PLLs
* Generates clocks and resets for digital logic
e Supports 2 crystal oscillators 4MHZ-16 MHz
e Supports 2 PLLs 48-150MHz
e Supports 32KHz ultra-low power oscillator
* Integrated low-power RC oscillator
* On-the fly frequency change of CPU, HSB, PBA, and PBB clocks
* Sleep modes allow simple disabling of logic clocks, PLLs, and oscillators
* Module-level clock gating through maskable peripheral clocks
* Wake-up from internal or external interrupts
* Generic clocks with wide frequency range provided
* Automatic identification of reset sources
e Controls brownout detector (BOD), RC oscillator, and bandgap voltage reference through control
and calibration registers

8.2 Overview
The Power Manager (PM) controls the oscillators and PLLs, and generates the clocks and
resets in the device. The PM controls two fast crystal oscillators, as well as two PLLs, which can
multiply the clock from either oscillator to provide higher frequencies. Additionally, a low-power
32KHz oscillator is used to generate the real-time counter clock for high accuracy real-time mea-
surements. The PM also contains a low-power RC oscillator with fast start-up time, which can be
used to clock the digital logic.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into three clock domains,
one for the CPU and HSB, one for modules on the PBA bus, and one for modules on the PBB
bus.The three clocks can run at different speeds, so the user can save power by running periph-
erals at a relatively low clock, while maintaining a high CPU performance. Additionally, the
clocks can be independently changed on-the-fly, without halting any peripherals. This enables
the user to adjust the speed of the CPU and memories to the dynamic load of the application,
without disturbing or re-configuring active peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
switched off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurrence of interrupts.

The Power Manager also contains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identified by software.

AIMEL 36

32072A-AVR32-03/09 I ©

8.3

Block Diagram

=\ 0

32072A-AVR32-03/09

fuses—m

Figure 8-1. Power Manager Block Diagram
» Synchronous
RCOSC | Synchronous | " clocks
~ | Clock Generator CPU, HSB,
—1 PBA, PBB
Oscillator 0 ; PLLO
Oscillator 1 » PLLL
Ly]
Generic Clock)
- Generator —Generic clocks-m
32 KHz 32 KHz clock
X M —
Oscillator for RTC
OSC/PLL
Control signals _ RC
| Oscillator
—Slow clock———
Y
Oscillator and Startup
PLL Control Counter
A
Itage Regulator=—
interrupts—=| Sleep Controller fa—, 5P
Calibration ?
Registers
A\
Brown-Out » Reset Controller [—resets—m
Detector
Power-On o
Detector o

A
Other reset
External Reset Pad x

sources

ATMEL

Y 5

37

8.4 Product Dependencies

8.4.1 I/O Lines
The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with GPIO lines. The programmer must first program the GPIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the GPIO controller.

8.4.2 Interrupt
The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

8.5 Functional Description

8.5.1 Slow Clock
The slow clock is generated from an internal RC oscillator which is always running, except in
Static mode. The slow clock can be used for the main clock in the device, as described in Sec-
tion 8.5.5. The slow clock is also used for the Watchdog Timer and measuring various delays in
the Power Manager.

The RC oscillator has a 3 cycles startup time, and is always available when the CPU is running.
The RC oscillator operates at approximately 115 kHz, and can be calibrated to a narrow range
by the RCOSCCAL fuses. Software can also change RC oscillator calibration through the use of
the RCCR register. Please see the Electrical Characteristics section for details.

RC oscillator can also be used as the RTC clock when crystal accuracy is not required.

8.5.2 Oscillator 0 and 1 Operation
The two main oscillators are designed to be used with an external 450 kHz to 16 MHz crystal
and two biasing capacitors, as shown in Figure 8-2 on page 39. Oscillator O can be used for the
main clock in the device, as described in Section 8.5.5. Both oscillators can be used as source
for the generic clocks, as described in Section 8.5.8.

The oscillators are disabled by default after reset. When the oscillators are disabled, the XIN and
XOUT pins can be used as general purpose I/0Os. When the oscillators are configured to use an
external clock, the clock must be applied to the XIN pin while the XOUT pin can be used as a
general purpose /0.

The oscillators can be enabled by writing to the OSCnEN bits in MCCTRL. Operation mode
(external clock or crystal) is chosen by writing to the MODE field in OSCCTRLn. Oscillators are
automatically switched off in certain sleep modes to reduce power consumption, as described in
Section 8.5.7.

After a hard reset, or when waking up from a sleep mode that disabled the oscillators, the oscil-
lators may need a certain amount of time to stabilize on the correct frequency. This start-up time
can be set in the OSCCTRLn register.

The PM masks the oscillator outputs during the start-up time, to ensure that no unstable clocks
propagate to the digital logic. The OSCnRDY bits in POSCSR are automatically set and cleared
according to the status of the oscillators. A zero to one transition on these bits can also be con-
figured to generate an interrupt, as described in Section 8.6.7.

AIMEL 38

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 8-2. Oscillator Connections

C,

XOUT & I||

XIN g I||

C,

8.5.3 32 KHz Oscillator Operation

8.5.4 PLL Operation

32072A-AVR32-03/09

The 32 KHz oscillator operates as described for Oscillator 0 and 1 above. The 32 KHz oscillator
is used as source clock for the Real-Time Counter.

The oscillator is disabled by default, but can be enabled by writing OSC32EN in OSCCTRL32.
The oscillator is an ultra-low power design and remains enabled in all sleep modes except Static
mode.

While the 32 KHz oscillator is disabled, the XIN32 and XOUT32 pins are available as general
purpose I/0Os. When the oscillator is configured to work with an external clock (MODE field in
OSCCTRL32 register), the external clock must be connected to XIN32 while the XOUT32 pin
can be used as a general purpose /0.

The startup time of the 32 KHz oscillator can be set in the OSCCTRL32, after which OSC32RDY
in POSCSR is set. An interrupt can be generated on a zero to one transition of OSC32RDY.

As a crystal oscillator usually requires a very long startup time (up to 1 second), the 32 KHz
oscillator will keep running across resets, except Power-On-Reset.

The device contains two PLLs, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLLs
can take either Oscillator O or 1 as reference clock. The PLL output is divided by a multiplication
factor, and the PLL compares the resulting clock to the reference clock. The PLL will adjust its
output frequency until the two compared clocks are equal, thus locking the output frequency to a
multiple of the reference clock frequency.

When the PLL is switched on, or when changing the clock source or multiplication factor for the
PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for the digital
logic is automatically masked when the PLL is unlocked, to prevent connected digital logic from
receiving a too high frequency and thus become unstable.

AIMEL 39

Y 5

Figure 8-3. PLL with Control Logic and Filters

PLLMUL

¢

Output
Divider

«——» Mask [—PLLcockp

——0Osc0 clock Inp ut PLL LOCK >

Divider

——0scl clock +
PLLEN

PLLOPT
P'-'-|OSC PLLDIV |

8.54.1 Enabling the PLL
PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator 0 or 1
as clock source. The PLLMUL and PLLDIV fields must be written with the multiplication and divi-
sion factors, respectively, creating the PLL frequency:

fo L = 2*(PLLMUL+1)/(PLLDIV+1) » fogce

The PLLNn.PLLOPT field should be set to proper values according to the PLL operating fre-
quency. The PLLOPT field can also be set to divide the output frequency of the PLLs by 2.

The lock signal for each PLL is available as a LOCKn flag in POSCSR. An interrupt can be gen-
erated on a 0 to 1 transition of these bits.

8.5.5 Synchronous Clocks

The slow clock (default), Oscillator 0, or PLLO provide the source for the main clock, which is the
common root for the synchronous clocks for the CPU/HSB, PBA, and PBB modules. The main
clock is divided by an 8-bit prescaler, and each of these four synchronous clocks can run from
any tapping of this prescaler, or the undivided main clock, as long as fcpy [fpga g - The synchro-
nous clock source can be changed on-the fly, responding to varying load in the application. The
clock domains can be shut down in sleep mode, as described in Section 8.5.7. Additionally, the
clocks for each module in the four domains can be individually masked, to avoid power con-
sumption in inactive modules.

AIMEL 40

32072A-AVR32-03/09 I ©

Figure 8-4. Synchronous Clock Generation

S
—Se 0 OO
Instruction Controller
[———----
I
I
—Sowd i
—GCs0d I
— Alod —» Prescaer i
| CPUDIV
I
MCSEL | CPUSEL
o
I
I
I
I
8551 Selecting PLL or oscillator for the main clock
The common main clock can be connected to the slow clock, Oscillator 0, or PLLO. By default,
the main clock will be connected to the slow clock. The user can connect the main clock to Oscil-
lator O or PLLO by writing the MCSEL field in the Main Clock Control Register (MCCTRL). This
must only be done after that unit has been enabled, otherwise a deadlock will occur. Care
should also be taken that the new frequency of the synchronous clocks does not exceed the
maximum frequency for each clock domain.
8.5.5.2 Selecting synchronous clock division ratio

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-
caler division for the CPU clock by writing CKSEL.CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

_ (CPUSEL +1)
fepu = fnain/2

Similarly, the clock for the PBA, and PBB can be divided by writing their respective fields.
To ensure correct operation, frequencies must be selected so that fop [fpga g. Also, frequen-
cies must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep

AIMEL 4

32072A-AVR32-03/09 I ©

8.5.5.3

8.5.6

8.5.6.1

8.5.6.2

8.5.7

one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required perfor-
mance, while keeping the PBA and PBB frequency constant.

Clock ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER.CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

Peripheral Clock Masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to O.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 8-6 on page 52 contains a list of implemented maskable clocks.

Cautionary note

The OCD clock must never be switched off if the user wishes to debug the device with a JTAG
debugger.

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PBx bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

Mask ready flag

Sleep Modes

32072A-AVR32-03/09

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

AIMEL 42

Y 5

8.5.7.1

8.5.7.2

Table 8-1.

Entering and exiting sleep modes

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLLs can also be switched off to save power. Some of these modules have a rel-
atively long start-up time, and are only switched off when very low power consumption is
required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers. Note that even if an interrupt is enabled in sleep mode, it may not trigger if
the source module is not clocked.

Supported sleep modes

The following sleep modes are supported. These are detailed in Table 8-1 on page 43.
eldle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt.

*Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules.

«Standby: All synchronous clocks are stopped, but oscillators and PLLs are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt.

«Stop: As Standby, but Oscillator 0 and 1, and the PLLs are stopped. 32 KHz (if enabled) and
RC oscillators and RTC/WDT still operate. Wake-up sources are RTC, external interrupt, or
external reset pin.

*DeepStop: All synchronous clocks, Oscillator 0 and 1 and PLL 0 and 1 are stopped. 32 KHz
oscillator can run if enabled. RC oscillator still operates. Bandgap voltage reference and BOD is
turned off.

«Static: All oscillators, including 32 KHz and RC oscillator are stopped. Bandgap voltage refer-
ence BOD detector is turned off.

Sleep Modes

Index

Sleep Mode

PBA,B Osc0,1 BOD & Voltage
CPU HSB GCLK PLLO,1 Osc32 RCOsc | Bandgap | Regulator

0

Idle

Stop Run Run Run Run Run On Full power

Frozen

Stop Stop Run Run Run Run On Full power

Standby

Stop Stop Stop Run Run Run On Full power

Stop

Stop Stop Stop Stop Run Run On Low power

DeepStop

Stop Stop Stop Stop Run Run Off Low power

1
2
3
4
5

Static

Stop Stop Stop Stop Stop Stop Off Low power

8.5.7.3

The power level of the internal voltage regulator is also adjusted according to the sleep mode to
reduce the internal regulator power consumption.

Precautions when entering sleep mode

32072A-AVR32-03/09

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended

AIMEL 43

Y 5

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU is automatically stopped in a safe state to ensure that all CPU bus operations are com-
plete when the sleep mode goes into effect. Thus, when entering Idle mode, no further action is
necessary.

When entering a sleep mode (except Idle mode), all HSB masters must be stopped before
entering the sleep mode. Also, if there is a chance that any PB write operations are incomplete,
the CPU should perform a read operation from any register on the PB bus before executing the
sleep instruction. This will stall the CPU while waiting for any pending PB operations to
complete.

8.5.8 Generic Clocks

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 256. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

Figure 8-5. Generic Clock Generation

Sleep
Controller
Y

——0sc0 clock: Mask —Generic Clock—»
——0scl1 clock " P
——PLLO clock Divider
——PLL1 clock

PLLSEL * DIVEN CEN

OSCSEL Dl'V |

8.5.8.1 Enabling a generic clock

32072A-AVR32-03/09

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fecik = fsre/(2x(DIV +1))

AIMEL 44

Y 5

8.5.8.2

8.5.8.3

8.5.8.4

8.5.9

8.5.10

32072A-AVR32-03/09

Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to 0,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.

Changing clock frequency

When changing generic clock frequency by writing GCCTRL, the clock should be switched off by
the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

Generic clock implementation

The generic clocks are allocated to different functions as shown in Table 8-2 on page 45.

Table 8-2. Generic Clock Allocation
Clock number Function
0 GCLKO pin
1 GCLK1 pin
2 GCLK2 pin
3 GCLK3 pin
4 GLCK_USBB

Divided PB Clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PBx clock. This is described in the documentation for the
relevant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PBx
clocks are stopped.

Debug Operation

The OCD clock must never be switched off if the user wishes to debug the device with a JTAG
debugger.

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PBx
clocks. This is described in the documentation for the relevant modules. The divided PBx clocks
are always debug qualified clocks.

Debug qualified PBx clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

AIMEL 4

Y 5

8.5.11 Reset Controller

32072A-AVR32-03/09

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated. Table 8-4 on page 47 lists these
and other reset sources supported by the Reset Controller.

Figure 8-6. Reset Controller Block Diagram

RC_RCAUSE

RESET_N &—>

Power-On _ _______, CPU,HSB,
Detector = PBA, PBB
Reset
Brownout C Controller »OCD, RTC/WDT
Detector o Clock Generato
NTAE >
oCD >

W atchdog Reset——»

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Table 8-3. Reset Description

Reset source Description
Power-on Reset Supply voltage below the power-on reset detector
threshold voltage
External Reset RESET_N pin asserted
Brownout Reset Supply voltage below the brownout reset detector
threshold voltage
CPU Error Caused by an illegal CPU access to external memory
while in Supervisor mode
Watchdog Timer See watchdog timer documentation.
OCD See On-Chip Debug documentation
ATMEL 46
Y 5

When a reset occurs, some parts of the chip are not necessarily reset, depending on the reset
source. Only the Power On Reset (POR) will force a reset of the whole chip.

Table 8-4 on page 47 lists parts of the device that are reset, depending on the reset source.

Table 8-4.

Effect of the Different Reset Events

Power-On
Reset

External
Reset

Watchdog
Reset

BOD
Reset

CPU Error
Reset

OCD
Reset

CPU/HSB/PBA/PBB
(excluding Power Manager)

Y

Y

Y

Y

32 KHz oscillator

RTC control register

GPLP registers

Watchdog control register

Voltage calibration register

RC Oscillator Calibration
register

<|=<|=<|=<|=<|=<

2| 2| < | 2|22

2|22\ 2|2 |2

2| 2| < | Z2|2|2

2| 2| < | Z2|2|2

Z|1z2|<|Z2|Z2|Z2

BOD control register

Bandgap control register

Clock control registers

Osc0/Osc1 and control registers

PLLO/PLL1 and control registers

OCD system and OCD registers

<|=<|=<|=<|=<|=<

<|=<|=<|=<|=<|=

Z2 | X | K| < |22

<|=<|=<|=<|z|2z

<|=<|=<|=<|z|2z

Z2 | X | K| <[22

8.5.11.1

8.5.11.2

32072A-AVR32-03/09

The cause of the last reset can be read from the RCAUSE register. This register contains one bit
for each reset source, and can be read during the boot sequence of an application to determine
the proper action to be taken.

Power-On detector

The Power-On Detector monitors the VDDCORE supply pin and generates a reset when the
device is powered on. The reset is active until the supply voltage from the linear regulator is
above the power-on threshold level. The reset will be re-activated if the voltage drops below the
power-on threshold level. See Electrical Characteristics for parametric details.

Brown-Out detector

The Brown-Out Detector (BOD) monitors the VDDCORE supply pin and compares the supply
voltage to the brown-out detection level, as set in BOD.LEVEL. The BOD is disabled by default,
but can be enabled either by software or by flash fuses. The Brown-Out Detector can either gen-
erate an interrupt or a reset when the supply voltage is below the brown-out detection level. In
any case, the BOD output is available in bit POSCR.BODET bit.

Note that any change to the BOD.LEVEL field of the BOD register should be done with the BOD
deactivated to avoid spurious reset or interrupt.

See Electrical Characteristics chapter for parametric details.

AIMEL 47

Y 5

8.5.11.3 External reset

The external reset detector monitors the state of the RESET_N pin. By default, a low level on
this pin will generate a reset.

8.5.12 Calibration Registers

32072A-AVR32-03/09

The Power Manager controls the calibration of the RC oscillator, voltage regulator, bandgap
voltage reference through several calibrations registers.

Those calibration registers are loaded after a Power On Reset with default values stored in fac-
tory-programmed flash fuses.

Although it is not recommended to override default factory settings, it is still possible to override
these default values by writing to those registers. To prevent unexpected writes due to software
bugs, write access to these registers is protected by a “key”. First, a write to the register must be
made with the field “"KEY” equal to 0x55 then a second write must be issued with the “KEY” field
equal to OxXAA.

AIMEL 4

Y 5

8.6 User Interface
Table 8-5. PM Register Memory Map

Offset Register Register Name Access Reset State
0x000 Main Clock Control MCCTRL Read/Write 0x00000000
0x0004 Clock Select CKSEL Read/Write 0x00000000
0x008 CPU Mask CPUMASK Read/Write 0x00000003
0x00C HSB Mask HSBMASK Read/Write 0x00000FFF
0x010 PBA Mask PBAMASK Read/Write O0X001FFFFF
0x014 PBB Mask PBBMASK Read/Write 0x000003FF
0x020 PLLO Control PLLO Read/Write 0x00000000
0x024 PLL1 Control PLL1 Read/Write 0x00000000
0x028 Oscillator 0 Control Register OSCCTRLO Read/Write 0x00000000
0x02C Oscillator 1 Control Register OSCCTRL1 Read/Write 0x00000000
0x030 Oscillator 32 Control Register OSCCTRL32 Read/Write 0x00000000
0x040 PM Interrupt Enable Register IER Write-only 0x00000000
0x044 PM Interrupt Disable Register IDR Write-only 0x00000000
0x048 PM Interrupt Mask Register IMR Read-only 0x00000000
0x04C PM Interrupt Status Register ISR Read-only 0x00000000
00050 PM Interrupt Clear Register ICR Write-only 0x00000000
0x054 Power and Oscillators Status Register POSCSR Read/Write 0x00000000
0x060 Generic Clock Control GCCTRL Read/Write 0x00000000
0x0CO0 RC Oscillator Calibration Register RCCR Read/Write Factory settings
0x0C4 Bandgap Calibration Register BGCR Read/Write Factory settings
0x0C8 Linear Regulator Calibration Register VREGCR Read/Write Factory settings
0x0D0 BOD Level Register BOD Read/Write BOD fuses in Flash
0x200 General Purpose Low-Power register GPLP Read/Write 0x00000000

AIMEL 4

32072A-AVR32-03/09 I ©

8.6.1 Main Clock Control Register

Name: MCCTRL

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- -] | [I
23 22 21 20 19 18 17 16

L - | | [I
15 14 13 12 11 10 9 8

L - | | [I
7 6 5 4 3 2 1 0

‘ - ‘ | ‘ - ‘OSClEN OSCOEN MCSEL

¢ OSCI1EN: Oscillator 1 Enable
1: Oscillator 1 is enabled

0: Oscillator 1 is disabled

¢ OSCOEN: Oscillator 0 Enable
1: Oscillator 0 is enabled

0: Oscillator 0 is disabled
¢ MCSEL: Main Clock Select

This field contains the clock selected as the main clock.

MCSEL Selected Clock
0b00 Slow Clock
0b01 Oscillator 0
0b10 PLL O

Ob11 Reserved

32072A-AVR32-03/09

ATMEL

Y 5

50

8.6.2 Clock Select Register

Name: CKSEL

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ PBBDIV ‘ - | - ‘ - ‘ - ‘ PBBSEL ‘
23 22 21 20 19 18 17 16

‘ PBADIV ‘ - | - ‘ - ‘ - ‘ PBASEL ‘
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - | - ‘ - ‘ - ‘ CPUSEL ‘

« PBBDIV: PBB Division Enable
PBBDIV = 0: PBB clock equals main clock.

PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL*D),

« PBADIV, PBASEL: PBA Division and Clock Select
PBADIV = 0: PBA clock equals main clock.

PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+D),

« CPUDIV, CPUSEL: CPU/HSB Division and Clock Select
CPUDIV = 0: CPU/HSB clock equals main clock.

CPUDIV = 1: CPU/HSB clock equals main clock divided by 2(CPUSEL+D),
Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears POSCSR.CKRDY. The register must not be re-written until CKRDY goes high.

AIMEL 51

32072A-AVR32-03/09 I ©

8.6.3 Clock Mask Registers

Name: CPU/HSB/PBA/PBBMASK
Access Type: Read/Write
Offset: 0x08-0x14
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
‘ MASK[31:24] ‘
23 22 21 20 19 18 17 16
‘ MASK[23:16]
15 14 13 12 11 10 9 8
‘ MASK[15:8]
7 6 5 4 3 2 1 0
‘ MASK([7:0]

« MASK: Clock Mask

If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current

power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is
shown in Table 8-6 on page 52.

Table 8-6. Maskable module clocks in AT32UC3AS.
Bit | CPUMASK HSBMASK PBAMASK PBBMASK
0 - FLASHC INTC HMATRIX
1 ocp®W PBA bridge GPIO USBB
2 - PBB bridge PDCA FLASHC
3 - USBB PM/RTC/EIM SMC
4 - PDCA ADC SDRAMC
5 - EBI SPIO HECC
6 - PBC bridge SPI1 MCI
7 - DMACA TWIMO BUSMON
8 - BUSMON TWIM1 MSI
9 - HRAMCO TWISO AES
10 | - HRAMC1 TWIS1 -
1 | - - USARTO -
12 | - - USART1 -
13 | - - USART2 -
14 | - - USART3 -
15 | - - ssc -
AIMEL

32072A-AVR32-03/09

52

Table 8-6. Maskable module clocks in AT32UC3AS.

Bit CPUMASK HSBMASK PBAMASK PBBMASK
16 - - TCO -

17 - - TC1 -

18 - - DAC -

19 - - JTAGM -

20 - - AWM -

31: - - - -

21

Note: 1. This bit must be one if the user wishes to debug the device with a JTAG debugger.

32072A-AVR32-03/09

ATMEL

Y 5

53

8.6.4 PLL Control Registers

Name: PLLO,1

Access Type: Read/Write

Offset: 0x20-0x24

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ PLLTEST - PLLCOUNT ‘
23 22 21 20 19 18 17 16

‘ PLLMUL ‘
15 14 13 12 11 10 9 8

‘ PLLDIV ‘
7 6 5 4 3 2 1 0

‘ - - - PLLOPT PLLOSC PLLEN

e PLLTEST: PLL Test

Reserved for internal use. Always write to O.

* PLLCOUNT: PLL Count

Specifies the number of slow clock cycles before ISR.LOCKn will be set after PLLn has been written, or after PLLn has been

automatically re-enabled after exiting a sleep mode.

e« PLLMUL: PLL Multiply Factor
e PLLDIV: PLL Division Factor

These fields determine the ratio of the PLL output frequency to the source oscillator frequency:

foL = 2xfye x (PLLMUL +1)/(PLLDIV +1)

fNote that the PLLMUL field cannot be equal to O or 1, or the behavior of the PLL will be undefined.

e« PLLOPT: PLL Option

Select the operating range for the PLL.

PLLOPT[O]: Select the VCO frequency range
PLLOPT[1]: Enable the extra output divider

PLLOPT[2]: Disable the Wide-Bandwidth mode (Wide-Bandwidth mode allows a faster startup time and out-of-lock time)

Description
PLLOPTIO]: VCO frequency
0 160MHz<f,.,<240MHz
1 80MHz<f,.,<180MHz
PLLOPTI[1]: Output divider
0 fout = fuco
1 fout = fuco/2

32072A-AVR32-03/09

ATMEL

Y 5

54

Description
PLLOPT[2]
0 Wide Bandwidth Mode enabled
1 Wide Bandwidth Mode disabled

¢ PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.

1: Oscillator 1 is the source for the PLL.

e PLLEN: PLL Enable
0: PLL is disabled.

1: PLL is enabled.

AIMEL 55

32072A-AVR32-03/09 I ©

8.6.5 Oscillator 0/1 Control Registers

Name: OSCCTRLO,1
Access Type: Read/Write
Offset: 0x28-0x2C
Reset Value: 0x00000000

31 30 29 28 27 26 25 24
- r - - - - & - [- @ - |
23 22 21 20 19 18 17 16
- r - - - - & - [- @ - |
15 14 13 12 11 10 9 8
| i | i | i | i | i | STARTUP |
7 6 5 4 3 2 1 0
- r - - - [- | vope |

e STARTUP: Oscillator Startup Time
Select startup time for the oscillator.

Number of RC oscillator Approximative Equivalent time
STARTUP clock cycle (RCOsc =115 kHz)
0 0 0
1 64 560 us
2 128 1.1ms
3 2048 18 ms
4 4096 36 ms
5 8192 71 ms
6 16384 142 ms
7 Reserved Reserved

¢ MODE: Oscillator Mode
Choose between crystal, or external clock

0: External clock connected on XIN, XOUT can be used as an I/O (no crystal)
1: Crystal is connected to XIN/XOUT - Oscillator is used with automatic gain control
2 to 7: Reserved

AIMEL 56

32072A-AVR32-03/09 I ©

8.6.6 32 KHz Oscillator Control Register

Name: OSCCTRL32
Access Type: Read/Write
Offset: 0x30
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - N - -
23 22 21 20 19 18 17 16
‘ - ‘ - | - - ‘ - ‘ STARTUP ‘
15 14 13 12 11 10 9 8
- - - N vope
7 6 5 4 3 2 1 0
| i | i | i i | i | i i OSC32EN

e STARTUP: Oscillator Startup Time
Select startup time for 32 KHz oscillator

Number of RC oscillator Approximative Equivalent time
STARTUP clock cycle (RCOsc =115 kHz)
0 0 0
1 128 1.1ms
2 8192 72.3 ms
3 16384 143 ms
4 65536 570 ms
5 131072 11s
6 262144 23s
7 524288 46s

Note: This register is only reset by Power-On Reset
* MODE: Oscillator Mode

Choose between crystal, or external clock
0: External clock connected on XIN32, XOUT32 can be used as a I/O (no crystal)
1: Crystal is connected to XIN32/XOUT32 - Oscillator is used with automatic gain control

2 to 7: Reserved

¢ OSC32EN: Enable the 32 KHz oscillator
0: 32 KHz Oscillator is disabled

1: 32 KHz Oscillator is enabled

32072A-AVR32-03/09

ATMEL

Y 5

57

8.6.7 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x40

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

- - - - ¢ - @ - | - | soooer |
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

Writing a one to a bit in this register will set the corresponding bit in IMR.
Writing a zero to a bit in this register has no effect.

ATMEL e

32072A-AVR32-03/09

8.6.8 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x44

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

- - - - ¢ - @ - | - | soooer |
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

Writing a one to a bit in this register will clear the corresponding bit in IMR.
Writing a zero to a bit in this register has no effect.

ATMEL et

32072A-AVR32-03/09

8.6.9 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x48

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| | | | | | | soooer_ |
15 14 13 12 11 10 9 8

‘ | ‘ ‘ | | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ | | LOCK1 ‘ LOCKO ‘

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

32072A-AVR32-03/09

ATMEL

60

8.6.10 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x4C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

- - - - ¢ - @ - | - | soooer |
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

* BODDET: Brown out detection
This bit is set when a 0 to 1 transition on POSCSR.BODDET bit is detected: BOD has detected that power supply is going

below BOD reference value.
This bit is cleared when the corresponding bit in ICR is written to one.

*« OSC32RDY: 32 KHz oscillator Ready
This bit is set when a 0 to 1 transition on the POSCSR.OSC32RDY bit is detected: The 32 KHz oscillator is stable and

ready to be used as clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

¢ OSCI1RDY: Oscillator 1 Ready
This bit is set when a 0 to 1 transition on the POSCSR.OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used

as clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

* OSCORDY: Oscillator 0 Ready
This bit is set when a 0 to 1 transition on the POSCSR.OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used

as clock source.
This bit is cleared when the corresponding bit in ICR is written to one.
¢ MSKRDY: Mask Ready
This bit is set when a 0 to 1 transition on the POSCSR.MSKRDY bit is detected: Clocks are now masked according to the
(CPU/HSB/PBA/PBB)_MASK registers.
This hit is cleared when the corresponding bit in ICR is written to one.

« CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.

1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing a one to ICR.CKRDY has no effect.

« LOCK1: PLL1 locked
This bit is set when a 0 to 1 transition on the POSCSR.LOCK1 bit is detected: PLL 1 is locked and ready to be selected as

clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

AIMEL 61

32072A-AVR32-03/09 I ©

e LOCKO: PLLO locked
This bit is set when a 0 to 1 transition on the POSCSR.LOCKO bit is detected: PLL 0 is locked and ready to be selected as

clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

AIMEL 62

32072A-AVR32-03/09 I ©

8.6.11 Interrupt Clear Register

Name: ICR

Access Type: Write-only

Offset: 0x50

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

- -+ -+ - & - @ - [- | eoooer |
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in ISR and the corresponding interrupt request.

ATMEL o

32072A-AVR32-03/09

8.6.12 Power and Oscillators Status Register

Name: POSCCR

Access Type: Read-only

Offset: 0x54

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

- r - - - - @ - [- | eopoer |
15 14 13 12 11 10 9 8

‘ - ‘ - | - ‘ - ‘ - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY ‘ MSKRDY | CKRDY ‘ - ‘ - ‘ - | LOCK1 ‘ LOCKO ‘

« BODDET: Brown out detection
0: No BOD event

1: BOD has detected that power supply is going below BOD reference value.

¢« OSC32RDY: 32 KHz oscillator Ready
0: The 32 KHz oscillator is not enabled or not ready.

1: The 32 KHz oscillator is stable and ready to be used as clock source.

¢ OSCI1RDY: OSC1 ready
0: Oscillator 1 not enabled or not ready.

1: Oscillator 1 is stable and ready to be used as clock source.

* OSCORDY: OSCO ready
0: Oscillator 0 not enabled or not ready.

1: Oscillator O is stable and ready to be used as clock source.

¢ MSKRDY: Mask ready
0: Mask register has been changed, masking in progress.

1: Clock are masked according to xxx_MASK

* CKRDY:
0: The CKSEL register has been written, and the new clock setting is not yet effective.

1: The synchronous clocks have frequencies as indicated in the CKSEL register.

¢ LOCK1: PLL 1locked
0:PLL 1 is unlocked

1:PLL 1 is locked, and ready to be selected as clock source.

¢ LOCKO: PLL O locked
0: PLL O is unlocked

1: PLL O is locked, and ready to be selected as clock source.

AIMEL 64

32072A-AVR32-03/09 I ©

8.6.13 Generic Clock Control Register

Name: GCCTRL
Access Type: Read/Write
Offset: 0x60
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
‘ DIV[7:0]
7 6 5 4 3 2 1 0
‘ - - - DIVEN - CEN PLLSEL OSCSEL

There is one GCCTRL register per generic clock in the design.

« DIV: Division Factor
* DIVEN: Divide Enable

0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).

¢ CEN: Clock Enable
0: Clock is stopped.

1: Clock is running.
¢ PLLSEL: PLL Select

0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.

¢ OSCSEL: Oscillator Select

0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1 is source for the generic clock.

32072A-AVR32-03/09

ATMEL

Y 5

65

8.6.14 Reset Cause Register

Name: RCAUSE
Access Type: Read-only
Offset: 0x140
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
‘ - ‘ - | - ‘ - ‘ - ‘ - | JTAGHARD ‘ OCDRST
7 6 5 4 3 2 1 0
‘ CPUERR ‘ - | - ‘ JTAG ‘ wDT ‘ EXT | BOD ‘ POR

« JTAGHARD: JTAG Hard Reset

The chip was reset by setting the bit RC_OCD in the JTAG reset register or by using the JTAG HALT instruction.

¢ OCDRST: OCD Reset

The CPU was reset because the RES strobe in the OCD Development Control register has been written to one.

¢ CPUERR: CPU Error
The CPU was reset because it had detected an illegal access.
e JTAG: JTAG reset
The CPU was reset by setting the bit RC_CPU in the JTAG reset register.
< WDT: Watchdog Reset
The CPU was reset because of a watchdog timeout.
e EXT: External Reset Pin
The CPU was reset due to the RESET pin being asserted.
« BOD: Brown-out Reset

The CPU was reset due to the supply voltage being lower than the brown-out threshold level.

* POR Power-on Reset
The CPU was reset due to the supply voltage being lower than the power-on threshold level.

ATMEL

32072A-AVR32-03/09 I ©

66

8.6.15 BOD Control Register

Name: BOD

Access Type: Read/Write

Offset: 0xDO

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - r - r - tr -t - [- [- Feo |
15 14 13 12 11 10 9 8

. - r - r - r - ¢ - [- | cTRL |
7 6 5 4 3 2 1 0

‘ - ‘ HYST | LEVEL ‘

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.
e« FCD: BOD Fuse calibration done
Set to 1 when CTRL, HYST and LEVEL fields has been updated by the Flash fuses after power-on reset or Flash fuses update
If one, the CTRL, HYST and LEVEL values will not be updated again by Flash fuses
Can be cleared to allow subsequent overwriting of the value by Flash fuses
« CTRL: BOD Control
0: BOD is off
1: BOD is enabled and can reset the chip
2: BOD is enabled and but cannot reset the chip. Only interrupt will be sent to interrupt controller, if enabled in the IMR register.
3: BOD is off
« HYST: BOD Hysteresis
0: No hysteresis
1: Hysteresis On
e LEVEL: BOD Level
This field sets the triggering threshold of the BOD. See Electrical Characteristics for actual voltage levels.
Note that any change to the LEVEL field of the BOD register should be done with the BOD deactivated to avoid spurious reset
or interrupt.

AIMEL 67

32072A-AVR32-03/09 I ©

8.6.16 RC Oscillator Calibration Register

Name: RCCR

Access Type: Read/Write

Offset: 0xCO

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- r - - - - 1 - [- Feo |
15 14 13 12 11 10 9 8

- r - - rr - [- 7 -] oA |
7 6 5 4 3 2 1 0

‘ CALIB ‘

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

¢ FCD: Flash Calibration Done
Set to 1 when CTRL, HYST, and LEVEL fields have been updated by the Flash fuses after power-on reset, or after Flash fuses

are reprogrammed. The CTRL, HYST and LEVEL values will not be updated again by the Flash fuses until a new power-on
reset or the FCD field is written to zero.

¢ CALIB: Calibration Value
Calibration Value for the RC oscillator.

AIMEL 68

32072A-AVR32-03/09 I ©

8.6.17 Bandgap Calibration Register

Name: BGCR

Access Type: Read/Write

Offset: 0xC4

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- < - - - - @ - [- | ro |
15 14 13 12 11 10 9 8

- < - - - - - [- 7 - |
7 6 5 4 3 2 1 0

- < - - & - [- | caLe |

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

e FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are
reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

e CALIB: Calibration value
Calibration value for Bandgap. See Electrical Characteristics for voltage values.

AIMEL 69

32072A-AVR32-03/09 I ©

8.6.18 PM Voltage Regulator Calibration Register

Name: VREGCR

Access Type: Read/Write

Offset: 0xC8

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- < - - - - @ - [- | ro |
15 14 13 12 11 10 9 8

- < - - - - - [- 7 - |
7 6 5 4 3 2 1 0

- < - - & - [- | caLe |

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

Calibration value for Voltage Regulator. See Electrical Characteristics for voltage values.

* FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are

reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.
e CALIB: Calibration value

AIMEL 70

32072A-AVR32-03/09 I ©

8.6.19 General Purpose Low-power Register

Name: GPLP

Access Type: Read/Write

Offset: 0x200

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ GPLP ‘
23 22 21 20 19 18 17 16

‘ GPLP ‘
15 14 13 12 11 10 9 8

‘ GPLP ‘
7 6 5 4 3 2 1 0

‘ GPLP

These registers are general purpose 32-bit registers that are reset only by power-on-reset. Any other reset will keep the content
of these registers untouched.

32072A-AVR32-03/09

ATMEL

Y 5

71

9. Real Time Counter (RTC)
Rev: 2.3.1.1

9.1 Features
e 32-bit real-time counter with 16-bit prescaler
* Clocked from RC oscillator or 32KHz oscillator
* Long delays
— Max timeout 272years
* High resolution: Max count frequency 16KHz
* Extremely low power consumption
¢ Available in all sleep modes except Static
* Interrupt on wrap

9.2 Overview
The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the system RC oscillator or the 32KHz crystal oscillator. Any tapping of the prescaler can be
selected as clock source for the RTC, enabling both high resolution and long timeouts. The pres-
caler cannot be written directly, but can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the value stored in the top
register (TOP), producing accurate periodic interrupts.

9.3 Block Diagram

Figure 9-1. Real Time Counter Block Diagram

CTRL TOP
[| | l
CLK32 EN PSEL
Y Y
—32 kHz
16-bit Prescaler —{ 32-bit counter }—»{ TOPI| [—IRQ—»
——RC OSC
VAL

9.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

AIMEL 72

32072A-AVR32-03/09 I ©

9.4.1 Power Management

9.4.2 Clocks

9.4.3 Interrupts

The RTC remains operating in all sleep modes except Static mode. Interrupts are not available
in DeepStop mode.

The RTC can use the system RC oscillator as clock source. This oscillator is always enabled
whenever this module is active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fz¢).

The RTC can also use the 32 KHz crystal oscillator as clock source. This oscillator must be
enabled before use. Please refer to the Power Manager chapter for details.

The clock for the RTC bus interface (CLK_RTC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
RTC before disabling the clock, to avoid freezing the RTC in an undefined state.

The RTC interrupt request line is connected to the interrupt controller. Using the RTC interrupt
requires the interrupt controller to be programmed first.

9.4.4 Debug Operation

The RTC prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

9.5 Functional Description

9.5.1 RTC Operation

95.1.1 Source clock

The RTC is enabled by writing a one to the Enable bit in the Control Register (CTRL.EN). The
16-bit prescaler will then increment on the selected clock. The prescaler cannot be read or writ-
ten, but it can be reset by writing a one to the Prescaler Clear bit in CTRL register (CTRL.PCLR).

The 32KHz Oscillator Select bit in CTRL register (CTRL.CLK32) selects either the RC oscillator
or the 32KHz oscillator as clock source for the prescaler.

The Prescale Select field in CTRL register (CTRL.PSEL) selects the prescaler tapping, selecting
the source clock for the RTC:

~(PSEL+1)

fare = 2 (fpc or 32 KHz)

9.5.1.2 Counter operation

32072A-AVR32-03/09

When enabled, the RTC will increment until it reaches TOP, and then wraps to 0x0. The status
bit TOPI in Interrupt Status Register (ISR) is set to one when this occurs. From 0x0 the counter
will count TOP+1 cycles of the source clock before it wraps back to 0x0.

The RTC count value can be read from or written to the Value register (VAL). Due to synchroni-
zation, continuous reading of the VAL register with the lowest prescaler setting will skip every
other value.

AIMEL 73

Y 5

9.5.1.3 RTC interrupt

9514 RTC wakeup

9.5.15 Busy bit

32072A-AVR32-03/09

The RTC interrupt is enabled by writing a one to the Top Interrupt bit in the Interrupt Enable Reg-
ister (IER.TOPI), and is disabled by writing a one to the Top Interrupt bit in the Interrupt Disable
Register (IDR.TOPI). The Interrupt Mask Register (IMR) can be read to see whether or not the
interrupt is enabled. If enabled, an interrupt will be generated if the TOPI bit in the Interrupt Sta-
tus Register (ISR) is set. The TOPI bit in ISR can be cleared by writing a one to the TOPI bit in
the Interrupt Clear Register (ICR.TOPI).

The RTC interrupt can wake the CPU from all sleep modes except DeepStop and Static modes.

The RTC can also wake up the CPU directly without triggering an interrupt when the ISR.TOPI
bit is set. In this case, the CPU will continue executing from the instruction following the sleep
instruction.

This direct RTC wake-up is enabled by writing a one to the Wake Enable bit in the CTRL register
(CTRL.WAKEN). When the CPU wakes from sleep, the CTRL.WAKEN bit must be written to
zero to clear the internal wake signal to the sleep controller, otherwise a new sleep instruction
will have no effect.

The RTC wakeup is available in all sleep modes except Static mode. The RTC wakeup can be
configured independently of the RTC interrupt.

Due to the crossing of clock domains, the RTC uses a few clock cycles to propagate the values
stored in CTRL, TOP, and VAL to the RTC. The RTC Busy bit in CTRL (CTRL.BUSY) indicates
that a register write is still going on and all writes to TOP, CTRL, and VAL will be discarded until
the CTRL.BUSY bit goes low again.

AIMEL 4

Y 5

9.6 User Interface

Table 9-1. RTC Register Memory Map

Offset Register Register Name Access Reset

0x00 Control Register CTRL Read/Write 0x00000000
0x04 Value Register VAL Read/Write 0x00000000
0x08 Top Register TOP Read/Write 0x00000000
0x10 Interrupt Enable Register IER Write-only 0x00000000
0x14 Interrupt Disable Register IDR Write-only 0x00000000
0x18 Interrupt Mask Register IMR Read-only 0x00000000
0x1C Interrupt Status Register ISR Read-only 0x00000000
0x20 Interrupt Clear Register ICR Write-only 0x00000000

32072A-AVR32-03/09

ATMEL

75

9.6.1 Control Register

Name: CTRL

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - - - -+ - ;- @ - [- |
23 22 21 20 19 18 17 16

I e e e e e =T
15 14 13 12 11 10 9 8

- r - [- [- | PSEL |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ BUSY ‘ CLK32 WAKEN PCLR EN ‘

e CLKEN: Clock Enable
1: The clock is enabled.

0: The clock is disabled.

* PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.

e BUSY: RTC Busy
This bit is set when the RTC is busy and will discard writes to TOP, VAL, and CTRL.

This bit is cleared when the RTC accepts writes to TOP, VAL, and CTRL.

e CLK32: 32 KHz Oscillator Select
1: The RTC uses the 32 KHz oscillator as clock source.

0: The RTC uses the RC oscillator as clock source.

* WAKEN: Wakeup Enable
1: The RTC wakes up the CPU from sleep modes.

0: The RTC does not wake up the CPU from sleep modes.

* PCLR: Prescaler Clear
Writing a one to this bit clears the prescaler.

Writing a zero to this bit has no effect.
This bit always reads as zero.

e EN: Enable
1: The RTC is enabled.

0: The RTC is disabled.

AIMEL 76

32072A-AVR32-03/09 I ©

9.6.2 Value Register

Name: VAL

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| VAL[31:24] |
23 22 21 20 19 18 17 16

‘ VAL[23:16] ‘
15 14 13 12 11 10 9 8

‘ VAL[15:8] ‘
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

* VAL[31:0]: RTC Value
This value is incremented on every rising edge of the source clock.

AIMEL 7

32072A-AVR32-03/09 I ©

9.6.3 Top Register

Name: TOP

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| VAL[31:24] |
23 22 21 20 19 18 17 16

‘ VAL[23:16] ‘
15 14 13 12 11 10 9 8

‘ VAL[15:8] ‘
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

* VAL[31:0]: RTC Top Value
VAL wraps at this value.

AIMEL 78

32072A-AVR32-03/09 I ©

9.6.4 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I S O I I B

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will set the corresponding bit in IMR.

ATMEL 7

32072A-AVR32-03/09

9.6.5 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I S O I I B

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

ATMEL 5

32072A-AVR32-03/09

9.6.6 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I S O I I B

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

ATMEL o

32072A-AVR32-03/09

9.6.7 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I S O I I B

* TOPI: Top Interrupt
This bit is set when VAL has wrapped at its top value.

This bit is cleared when the corresponding bit in ICR is written to one.

ATMEL 5

32072A-AVR32-03/09

9.6.8 Interrupt Clear Register

Name: ICR

Access Type: Write-only

Offset: 0x20

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I S O I I B

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in SR and the corresponding interrupt request.

ATMEL 5

32072A-AVR32-03/09

10. Watchdog Timer (WDT)
Rev: 2.3.1.1

10.1 Features
* Watchdog timer counter with 32-bit prescaler
* Clocked from the system RC oscillator (RCSYS)

10.2 Overview

The Watchdog Timer (WDT) has a prescaler generating a time-out period. This prescaler is
clocked from the RC oscillator. The watchdog timer must be periodically reset by software within
the time-out period, otherwise, the device is reset and starts executing from the boot vector. This
allows the device to recover from a condition that has caused the system to be unstable.

10.3 Block Diagram

Figure 10-1. WDT Block Diagram

CLR
- 32-bit Watchdog
RCSYS P Prescaler — Detector —Watchdog Reset—p>
EN———ro CTRL

10.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

104.1 Power Management

When the WDT is enabled, the WDT remains clocked in all sleep modes, and it is not possible to
enter Static mode.

10.4.2 Clocks

The WDT can use the system RC oscillator (RCSYS) as clock source. This oscillator is always
enabled whenever these modules are active. Please refer to the Electrical Characteristics chap-
ter for the characteristic frequency of this oscillator (fzc).

10.4.3 Debug Operation
The WDT prescaler is frozen during debug operation, unless the On-Chip Debug (OCD) system
keeps peripherals running in debug operation.

AIMEL B4

32072A-AVR32-03/09 I ©

10.5 Functional Description

32072A-AVR32-03/09

The WDT is enabled by writing a one to the Enable bit in the Control register (CTRL.EN). This
also enables the system RC clock (CLK_RCSYS) for the prescaler. The Prescale Select field
(PSEL) in the CTRL register selects the watchdog time-out period:

TWDT - 2(PSEL+1) / fRC

The next time-out period will begin as soon as the watchdog reset has occurred and count down
during the reset sequence. Care must be taken when selecting the PSEL field value so that the
time-out period is greater than the startup time of the chip, otherwise a watchdog reset can reset
the chip before any code has been run.

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then OxAA without changing the other bits. Failure to do so will cause
the write operation to be ignored, and the CTRL register value will not change.

The Clear register (CLR) must be written with any value with regular intervals shorter than the
watchdog time-out period. Otherwise, the device will receive a soft reset, and the code will start
executing from the boot vector.

When the WDT is enabled, it is not possible to enter Static mode. Attempting to do so will result
in entering Shutdown mode, leaving the WDT operational.

AIMEL 85

Y 5

10.6 User Interface

Table 10-1. WDT Register Memory Map

Offset Register Register Name Access Reset
0x00 Control Register CTRL Read/Write 0x00000000
0x04 Clear Register CLR Write-only 0x00000000

AIMEL 86

32072A-AVR32-03/09 I ©

10.6.1 Control Register

Name: CTRL

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

- [- [- | PSEL |
7 6 5 4 3 2 1 0

* KEY: Write protection key
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to be effective.
This field always reads as zero.
* PSEL: Prescale Select
PSEL is used as watchdog timeout period.
* EN: WDT Enable
1: WDT is enabled.
0: WDT is disabled.

AIMEL 87

32072A-AVR32-03/09 I ©

10.6.2 Clear Register

Name: CLR

Access Type: Write-only

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| CLR[31:24] |
23 22 21 20 19 18 17 16

‘ CLR[23:16] ‘
15 14 13 12 11 10 9 8

‘ CLR[15:8] ‘
7 6 5 4 3 2 1 0

‘ CLR[7:0] ‘

¢ CLR:

Writing periodically any value to this field when the WDT is enabled, within the watchdog time-out period, will prevent a
watchdog reset.
This field always reads as zero.

AIMEL 88

32072A-AVR32-03/09 I ©

11. Interrupt Controller (INTC)
Rev: 1.0.1.4

11.1 Features
e Autovectored low latency interrupt service with programmable priority
— 4 priority levels for regular, maskable interrupts
— One Non-Maskable Interrupt
* Up to 64 groups of interrupts with up to 32 interrupt requests in each

11.2 Overview

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have an
pending interrupt of the same level, the group with the lowest number takes priority.

11.3 Block Diagram
Figure 11-1 on page 89 gives an overview of the INTC. The grey boxes represent registers that
can be accessed via the user interface. The interrupt requests from the peripherals (IREQn) and
the NMI are input on the left side of the figure. Signals to and from the CPU are on the right side
of the figure.

Figure 11-1. Block Diagram of the Interrupt Controller

Interrupt Controller CPU
NMIREQ
< Masks | | SREG
- Masks
Y I[3-0]M
GM
o ValRegN
GrgRegN. >
=
[1| Rrn INTLEVEL _
Request - >
IREQ63 » Masking g
ValReqgl =
GrERegl. - =
RE —& K
IREQ32 H— IPR1 AUTOVECTOR
| ree -
IREQ31 > ValReq0 _
GrgRegO. -
IREQ2 . »| OR
IRE§1 T P
IREQO T ™ IPRO INT_level, offset *
IRR Registers IPR Registers ICR Registers

AIMEL 89

32072A-AVR32-03/09 I ©

11.4 Product Dependencies

1141

11.4.2

11.4.3

In order to use this module, other parts of the system must be configured correctly, as described
below.

Power Management

If the CPU enters a sleep mode that disables clocks used by the INTC, the INTC will stop func-
tioning and resume operation after the system wakes up from sleep mode.

The clock for the INTC bus interface (CLK_INTC) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager.

Debug Operation

When an external debugger forces the CPU into debug mode, the INTC continues normal
operation.

11.5 Functional Description

1151

32072A-AVR32-03/09

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group is active, the interrupt service routine must pri-
oritize between them. All of the input lines in each group are logically-ORed together to form the
GrpReqgN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the Interrupt Level (INTLEVEL) field in the corresponding
Interrupt Priority Register (IPR). The GrpReq inputs are then masked by the mask bits from the
CPU status register. Any interrupt group that has a pending interrupt of a priority level that is not
masked by the CPU status register, gets its corresponding ValReq line asserted.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely Interrupt Level 3 Mask (I3M) to Interrupt Level 0 Mask (I0OM), and Global Inter-
rupt Mask (GM). An interrupt request is masked if either the GM or the corresponding interrupt
level mask bit is set.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If an NMI interrupt request is pending, it automatically
gets the highest priority of any pending interrupt. If several interrupt groups of the highest pend-
ing interrupt level have pending interrupts, the interrupt group with the highest number is
selected.

The INTLEVEL and handler autovector offset (AUTOVECTOR) of the selected interrupt are
transmitted to the CPU for interrupt handling and context switching. The CPU doesn't need to
know which interrupt is requesting handling, but only the level and the offset of the handler
address. The IRR registers contain the interrupt request lines of the groups and can be read via
user interface registers for checking which interrupts of the group are actually active.

Non-Maskable Interrupts

A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMl is pending.

AIMEL %

Y 5

11.5.2 CPU Response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if an interrupt of level 3 is approved for handling, the interrupt mask bits I3M,
12M, I1M, and I0M are set in status register. If an interrupt of level 1 is approved, the masking
bits 11M and I0M are set in status register. The handler address is calculated by adding
AUTOVECTOR to the CPU system register Exception Vector Base Address (EVBA). The CPU
will then jump to the calculated address and start executing the interrupt handler.

Setting the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed through the interrupt controller. Setting of the same level mask bit prevents also multiple
requests of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

11.5.3 Clearing an Interrupt Request

11.6 User Interface

Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a
pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

Table 11-1. INTC Register Memory Map

Offset Register Register Name Access Reset
0x000 Interrupt Priority Register 0 IPRO Read/Write 0x00000000
0x004 Interrupt Priority Register 1 IPR1 Read/Write 0x00000000
0x0FC Interrupt Priority Register 63 IPR63 Read/Write 0x00000000
0x100 Interrupt Request Register 0 IRRO Read-only N/A
0x104 Interrupt Request Register 1 IRR1 Read-only N/A
Ox1FC Interrupt Request Register 63 IRR63 Read-only N/A
0x200 Interrupt Cause Register 3 ICR3 Read-only N/A
0x204 Interrupt Cause Register 2 ICR2 Read-only N/A
0x208 Interrupt Cause Register 1 ICR1 Read-only N/A
0x20C Interrupt Cause Register 0 ICRO Read-only N/A

32072A-AVR32-03/09

ATMEL

Y 5

91

11.6.1 Interrupt Priority Registers

Register Name: IPRO...IPR63

Access Type: Read/Write

Offset: 0x000 - OxOFC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| INTLEVEL[1:0] [- [- [N [- | - | - |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

| - | - | AUTOVECTOR][13:8] |
7 6 5 4 3 2 1 0

| AUTOVECTOR[7:0] |

e INTLEVEL: Interrupt Level
Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

00: INTO.
01: INT1.
10: INT2.
11: INT3.

* AUTOVECTOR: Autovector Address
Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give

halfword alignment.

AIMEL 92

32072A-AVR32-03/09 I ©

11.6.2 Interrupt Request Registers

Name: IRRO...IRR63
Access Type: Read-only
Offset: OXOFF - OX1FC
Reset Value: N/A
31 30 29 28 27 26 25 24

[TRR[32*x+31] | IRR[32°x+30] | IRR[32°x+29] | IRR[32*x+28] | IRR[32°x+27] | IRR[32°x+26] | IRR[32*x+25] | IRR[32°x+24] |

23 22 21 20 19 18 17 16
[IRREZ*x+23] | IRR[32x+22] | IRR[32*x+21] | IRR[32*x+20] | IRR[32*x+19] | IRR[32*x+18] | IRR[32*x+17] | IRR[32*x+16] |

15 14 13 12 11 10 9 8
[IRR[E2*x+15] | IRR[32x+14] | IRR[32*x+13] | IRR[32*x+12] | IRR[32*x+11] | IRR[32*x+10] | IRR[32*x+9] | IRR[32*x+8] |

7 6 5 4 3 2 1 0
[IRRB2x+7] | IRRB2'x+6] | IRR[32x+5] | IRR[32'x+4] | IRR[B2'x+3] | IRR[32x+2] | IRR[32'x+1] | IRR[2'x+0] |

¢ IRR: Interrupt Request line
This bit is cleared when no interrupt request is pending on this input request line.

This bit is set when an interrupt request is pending on this input request line.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 possible
input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is pending. The
IRRs are sampled continuously, and are read-only.

AIMEL 93

32072A-AVR32-03/09 I ©

11.6.3
Register Name:

Access Type:

Offset:

Read-only
0x200 - 0x20C

Interrupt Cause Registers
ICRO...ICR3

Reset Value: N/A
31 30 29 28 27 26 25 24
I : I - I I I - |
23 22 21 20 19 18 17 16
I : I - I I I - |
15 14 13 12 11 10 9 8
I : I - I I I - |
7 6 5 4 3 2 1 0

CAUSE

e CAUSE: Interrupt Group Causing Interrupt of Priority n
ICRn identifies the group with the highest priority that has a pending interrupt of level n. This value is only defined when at least

one interrupt of level n is pending.

32072A-AVR32-03/09

ATMEL

94

0.1 Interrupt Request Signal Map

32072A-AVR32-03/09

The various modules may output Interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64
groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt
signals in the same group share the same autovector address and priority level. Refer to the
documentation for the individual submodules for a description of the semantics of the different

interrupt requests.

The interrupt request signals are connected to the INTC as follows.

Table 0-1. Interrupt Request Signal Map

Group Line Module Signal
0 0 Stil_etto CPU with optional MPU and SYSBLOCK
optional OCD COMPARE

0 External Interrupt Controller EICO
1 External Interrupt Controller EIC1
2 External Interrupt Controller EIC 2
3 External Interrupt Controller EIC 3
4 External Interrupt Controller EIC 4

! 5 External Interrupt Controller EIC5
6 External Interrupt Controller EIC 6
7 External Interrupt Controller EIC7
8 Real Time Counter RTC
9 Power Manager PM
0 General Purpose Input/Output Controller GPIO O
1 General Purpose Input/Output Controller GPIO 1
2 General Purpose Input/Output Controller GPIO 2
3 General Purpose Input/Output Controller GPIO 3
4 General Purpose Input/Output Controller GPIO 4
5 General Purpose Input/Output Controller GPIO 5
6 General Purpose Input/Output Controller GPIO 6

2 7 General Purpose Input/Output Controller GPIO 7
8 General Purpose Input/Output Controller GPIO 8
9 General Purpose Input/Output Controller GPIO 9
10 General Purpose Input/Output Controller GPIO 10
11 General Purpose Input/Output Controller GPIO 11
12 General Purpose Input/Output Controller GPIO 12
13 General Purpose Input/Output Controller GPIO 13

ATMEL

Y 5

95

Table 0-1. Interrupt Request Signal Map
0 Peripheral DMA Controller PDCAO
1 Peripheral DMA Controller PDCA 1
2 Peripheral DMA Controller PDCA 2
3 Peripheral DMA Controller PDCA 3
’ 4 Peripheral DMA Controller PDCA 4
5 Peripheral DMA Controller PDCAS
6 Peripheral DMA Controller PDCA 6
7 Peripheral DMA Controller PDCA 7
4 0 Flash Controller FLASHC
5 0 Unive_rsal Synchr_onous/Asynchronous USARTO
Receiver/Transmitter
6 0 Unive_rsal Synchr_onous/Asynchronous USART1
Receiver/Transmitter
7 0 Unive_rsal Synchr_onous/Asynchronous USART?2
Receiver/Transmitter
8 0 Unive_rsal Synchr_onous/Asynchronous USART3
Receiver/Transmitter
9 0 Serial Peripheral Interface SPIO
10 0 Serial Peripheral Interface SPI1
11 0 Two-wire Master Interface TWIMO
12 0 Two-wire Master Interface TWIM1
13 0 Synchronous Serial Controller SsC
0 Timer/Counter TCO0
14 1 Timer/Counter TCO1
2 Timer/Counter TCO02
15 0 Analog to Digital Converter ADC
0 Timer/Counter TC10
16 1 Timer/Counter TC11
2 Timer/Counter TC12
17 0 USB 2.0 OTG Interface USBB
18 0 SDRAM Controller SDRAMC
19 0 Audio Bitstream DAC DAC
20 0 Mulitmedia Card Interface MCI
21 0 Advanced Encryption Standard AES

32072A-AVR32-03/09

ATMEL

Y 5

96

Table 0-1. Interrupt Request Signal Map

0 DMA Controller DMACA BLOCK
1 DMA Controller DMACA DSTT

22 2 DMA Controller DMACA ERR
3 DMA Controller DMACA SRCT
4 DMA Controller DMACA TFR

26 0 Memory Stick Interface MSI

27 0 Two-wire Slave Interface TWISO

28 0 Two-wire Slave Interface TWIS1

29 0 ggrl(;rn::c()):e corrector Hamming and Reed RS4

AIMEL o7

32072A-AVR32-03/09

Y 5

ATMEL o

32072A-AVR32-03/09

12. External Interrupt Controller (EIC)
Rev: 2.3.1.0

12.1 Features
* Dedicated interrupt request for each interrupt
¢ Individually maskable interrupts
* Interrupt on rising or falling edge
e Interrupt on high or low level
e Asynchronous interrupts for sleep modes without clock
 Filtering of interrupt lines
* Maskable NMl interrupt
* Keypad scan support

12.2 Overview

The External Interrupt Controller (EIC) allows pins to be configured as external interrupts. Each
external interrupt has its own interrupt request and can be individually masked. Each external
interrupt can generate an interrupt on rising or falling edge, or high or low level. Every interrupt
input has a configurable filter to remove spikes from the interrupt source. Every interrupt pin can
also be configured to be asynchronous in order to wake up the part from sleep modes where the
CLK_SYNC clock has been disabled.

A Non-Maskable Interrupt (NMI) is also supported. This has the same properties as the other
external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any
other interrupt mode.

The EIC can wake up the part from sleep modes without triggering an interrupt. In this mode,
code execution starts from the instruction following the sleep instruction.

The External Interrupt Controller has support for keypad scanning for keypads laid out in rows
and columns. Columns are driven by a separate set of scanning outputs, while rows are sensed
by the external interrupt lines. The pressed key will trigger an interrupt, which can be identified
through the user registers of the module.

AIMEL 9

32072A-AVR32-03/09 I ©

12.3 Block Diagram

Figure 12-1. EIC Block Diagram

IER

F——IR Q n—m

W ake

—EIC_W AKE =
detect -

LEVEL
MODE ASYNC
EDGE
| Y |
EN P olarity .| Asynchronus | ICR
Df control o detector ClRL
= Enable LEVEL b INTn
FILTER MODE
EXTINTR EDSE l
NMI ISR
CTRL . Edge/Level
¢ | Filter Detector *
—CLK_SYNC j f
—CLK_RCSYS
A
Prescaler - S hifter
? PRESC Et. PIN
I A 4
[SCAN]
12.4 1/O Lines Description
Table 12-1. 1/O Lines Description
Pin Name Pin Description Type
NMI Non-Maskable Interrupt Input
EXTINTN External Interrupt Input
SCANm Keypad scan pin m Output

12.5 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described

1251 I/O Lines

below.

SCANmM

The external interrupt pins (EXTINTn and NMI) are multiplexed with 1/O lines. To generate an
external interrupt from an external source the source pin must be configured as an input pins by
the 1/0O Controller. It is also possible to trigger the interrupt by driving these pins from registers in
the 1/0O Controller, or another peripheral output connected to the same pin.

12.5.2

Power Management

All interrupts are available in all sleep modes as long as the EIC module is powered. However, in
sleep modes where CLK_SYNC is stopped, the interrupt must be configured to asynchronous

mode.

32072A-AVR32-03/09

ATMEL

Y 5

100

12.5.3 Clocks

1254 Interrupts

The clock for the EIC bus interface (CLK_EIC) is generated by the Power Manager. This clock is
enabled at reset, and can be disabled in the Power Manager.

The filter and synchronous edge/level detector runs on a clock which is stopped in any of the
sleep modes where the system RC oscillator is not running. This clock is referred to as
CLK_SYNC. Refer to the Module Configuration section at the end of this chapter for details.

The Keypad scan function operates on the system RC oscillator clock CLK_RCSYS.

The external interrupt request lines are connected to the interrupt controller. Using the external
interrupts requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

1255 Debug Operation

The EIC is frozen during debug operation, unless the OCD system keeps peripherals running
during debug operation.

12.6 Functional Description

12.6.1 External Interrupts

32072A-AVR32-03/09

The external interrupts are not enabled by default, allowing the proper interrupt vectors to be set
up by the CPU before the interrupts are enabled.

Each external interrupt INTnh can be configured to produce an interrupt on rising or falling edge,
or high or low level. External interrupts are configured by the MODE, EDGE, and LEVEL regis-
ters. Each interrupt n has a bit INTn in each of these registers. Writing a zero to the INTn bit in
the MODE register enables edge triggered interrupts, while writing a one to the bit enables level
triggered interrupts.

If INTn is configured as an edge triggered interrupt, writing a zero to the INTn bit in the EDGE
register will cause the interrupt to be triggered on a falling edge on EXTINTnN, while writing a one
to the bit will cause the interrupt to be triggered on a rising edge on EXTINTN.

If INTn is configured as a level triggered interrupt, writing a zero to the INTn bit in the LEVEL
register will cause the interrupt to be triggered on a low level on EXTINTN, while writing a one to
the bit will cause the interrupt to be triggered on a high level on EXTINTn.

Each interrupt has a corresponding bit in each of the interrupt control and status registers. Writ-
ing a one to the INTn bit in the Interrupt Enable Register (IER) enables the external interrupt
from pin EXTINTN to propagate from the EIC to the interrupt controller, while writing a one to
INTn bit in the Interrupt Disable Register (IDR) disables this propagation. The Interrupt Mask
Register (IMR) can be read to check which interrupts are enabled. When an interrupt triggers,
the corresponding bit in the Interrupt Status Register (ISR) will be set. This bit remains set until a
one is written to the corresponding bit in the Interrupt Clear Register (ICR) or the interrupt is
disabled.

Writing a one to the INTn bit in the Enable Register (EN) enables the external interrupt on pin
EXTINTnN, while writing a one to INTn bit in the Disable Register (DIS) disables the external inter-
rupt. The Control Register (CTRL) can be read to check which interrupts are enabled. If a bit in
the CTRL register is set, but the corresponding bit in IMR is not set, an interrupt will not propa-

Alm L 101

Y 5

gate to the interrupt controller. However, the corresponding bit in ISR will be set, and
EIC_WAKE will be set.

If the CTRL.INTn bit is zero, then the corresponding bit in ISR will always be zero. Disabling an
external interrupt by writing to the DIS.INTn bit will clear the corresponding bit in ISR.

12.6.2 Synchronization and Filtering of External Interrupts

In synchronous mode the pin value of the EXTINTnN pin is synchronized to CLK_SYNC, so
spikes shorter than one CLK_SYNC cycle are not guaranteed to produce an interrupt. The syn-
chronization of the EXTINTn to CLK_SYNC will delay the propagation of the interrupt to the
interrupt controller by two cycles of CLK_SYNC, see Figure 12-2 on page 102 and Figure 12-3
on page 102 for examples (FILTER off).

It is also possible to apply a filter on EXTINTnN by writing a one to INTn bit in the FILTER register.
This filter is a majority voter, if the condition for an interrupt is true for more than one of the latest
three cycles of CLK_SYNC the interrupt will be set. This will additionally delay the propagation of
the interrupt to the interrupt controller by one or two cycles of CLK_SYNC, see Figure 12-2 on
page 102 and Figure 12-3 on page 102 for examples (FILTER on).

Figure 12-2. Timing Diagram, Synchronous Interrupts, High Level or Rising Edge

CLK_SYNC

EXTINTn/NMI

ISR.INTn:
FILTER off

ISR.INTn:
FILTER on

Figure 12-3. Timing Diagram, Synchronous Interrupts, Low Level or Falling Edge

CLK_SYNC

EXTINTn/NMI

ISR.INTn:
FILTER off

ISR.INTnN:
FILTER on

32072A-AVR32-03/09

Alm L 102

Y 5

12.6.3 Non-Maskable Interrupt

The NMI supports the same features as the external interrupts, and is accessed through the
same registers. The description in Section 12.6.1 should be followed, accessing the NMI bit
instead of the INTn bits.

The NMI is non-maskable within the CPU in the sense that it can interrupt any other execution
mode. Still, as for the other external interrupts, the actual NMI input can be enabled and disabled
by accessing the registers in the EIC.

12.6.4 Asynchronous Interrupts

Each external interrupt can be made asynchronous by writing a one to INTn in the ASYNC reg-
ister. This will route the interrupt signal through the asynchronous path of the module. All edge
interrupts will be interpreted as level interrupts and the filter is disabled. If an interrupt is config-
ured as edge triggered interrupt in asynchronous mode, a zero in EDGE.INTn will be interpreted
as low level, and a one in EDGE.INTn will be interpreted as high level.

EIC_WAKE will be set immediately after the source triggers the interrupt, while the correspond-
ing bit in ISR and the interrupt to the interrupt controller will be set on the next rising edge of
CLK_SYNC. Please refere to Figure 12-4 on page 103 for details.

When CLK_SYNC is stopped only asynchronous interrupts remain active, and any short spike
on this interrupt will wake up the device. EIC_WAKE will restart CLK_SYNC and ISR will be
updated on the first rising edge of CLK_SYNC.

Figure 12-4. Timing Diagram, Asynchronous Interrupts

12.6.5 Wakeup

32072A-AVR32-03/09

CLK_SYNC I_ CLK_SYNC I_

EXTINTN/NMI EXTINTn/NMI
ISR.INTR: | ISR.INTR: |
rising EDGE or high | rising EDGE or high)
LEVEL I LEVEL]
EIC_WAKE: EIC_WAKE:
rising EDGE or high rising EDGE or high
LEVEL LEVEL

The external interrupts can be used to wake up the part from sleep modes. The wakeup can be
interpreted in two ways. If the corresponding bit in IMR is one, then the execution starts at the
interrupt handler for this interrupt. If the bit in IMR is zero, then the execution starts from the next
instruction after the sleep instruction.

Alm L 103

Y 5

12.6.6 Keypad scan support

32072A-AVR32-03/09

The External Interrupt Controller also includes support for keypad scanning. The keypad scan
feature is compatible with keypads organized as rows and columns, where a row is shorted
against a column when a key is pressed.

The rows should be connected to the external interrupt pins with pull-ups enabled in the I/O Con-
troller. These external interrupts should be enabled as low level or falling edge interrupts. The
columns should be connected to the available scan pins. The I/O Controller must be configured
to let the required scan pins be controlled by the EIC. Unused external interrupt or scan pins can
be left controlled by the I/O Controller or other peripherals.

The Keypad Scan function is enabled by writing SCAN.EN to 1, which starts the keypad scan
counter. The SCAN outputs are tri-stated, except SCANJ[0], which is driven to zero. After
2(SCANPRESC+1) RC clock cycles this pattern is left shifted, so that SCAN[1] is driven to zero while
the other outputs are tri-stated. This sequence repeats infinitely, wrapping from the most signifi-
cant SCAN pin to SCANJO0].

When a key is pressed, the pulled-up row is driven to zero by the column, and an external inter-
rupt triggers. The scanning stops, and the software can then identify the key pressed by the
interrupt status register and the SCAN.PINS value.

The scanning stops whenever there is an active interrupt request from the EIC to the CPU.
When the CPU clears the interrupt flags, scanning resumes.

Alm L 104

Y 5

12.7 User Interface

Table 12-2. EIC Register Memory Map

Offset Register Register Name Access Reset

0x000 Interrupt Enable Register IER Write-only 0x00000000
0x004 Interrupt Disable Register IDR Write-only 0x00000000
0x008 Interrupt Mask Register IMR Read-only 0x00000000
0x00C Interrupt Status Register ISR Read-only 0x00000000
0x010 Interrupt Clear Register ICR Write-only 0x00000000
0x014 Mode Register MODE Read/Write 0x00000000
0x018 Edge Register EDGE Read/Write 0x00000000
0x01C Level Register LEVEL Read/Write 0x00000000
0x020 Filter Register FILTER Read/Write 0x00000000
0x024 Test Register TEST Read/Write 0x00000000
0x028 Asynchronous Register ASYNC Read/Write 0x00000000
0x2C Scan Register SCAN Read/Write 0x00000000
0x030 Enable Register EN Write-only 0x00000000
0x034 Disable Register DIS Write-only 0x00000000
0x038 Control Register CTRL Read-only 0x00000000

32072A-AVR32-03/09

ATMEL

105

12.7.1 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x000

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will set the corresponding bit in IMR.

¢ NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will set the corresponding bit in IMR.

A “'lEl,® 106

32072A-AVR32-03/09

12.7.2 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x004

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in IMR.

¢ NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in IMR.

A mE|,® 107

32072A-AVR32-03/09

12.7.3 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x008

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- - rr - r - r - - - ;- ;- |
23 22 21 20 19 18 17 16

- ! - r - r - r - ;- ;-]} - |
15 14 13 12 11 10 9 8

A e O I
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.
This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is disabled.

1: The Non-Maskable Interrupt is enabled.
This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

AIMEL 108

32072A-AVR32-03/09 I ©

12.7.4 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x00C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- - rr - r - r - - - ;- ;- |
23 22 21 20 19 18 17 16

- ! - r - r - r - ;- ;-]} - |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: An interrupt event has not occurred

1: An interrupt event has occurred
This bit is cleared by writing a one to the corresponding bit in ICR.

¢ NMI: Non-Maskable Interrupt
0: An interrupt event has not occurred

1: An interrupt event has occurred
This bit is cleared by writing a one to the corresponding bit in ICR.

AIMEL 109

32072A-AVR32-03/09 I ©

12.7.5 Interrupt Clear Register

Name: ICR

Access Type: Write-only

Offset: 0x010

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in ISR.

¢ NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in ISR.

A mE|,® 110

32072A-AVR32-03/09

12.7.6 Mode Register

Name: MODE

Access Type: Read/Write

Offset: 0x014

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e A A M
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INT5S ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

e INTn: External Interrupt n
0: The external interrupt is edge triggered.

1: The external interrupt is level triggered.

* NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is edge triggered.

1: The Non-Maskable Interrupt is level triggered.

A “'lEl,® 111

32072A-AVR32-03/09

12.7.7 Edge Register
Name: EDGE
Access Type: Read/Write
Offset: 0x018
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| | | |
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 INTS INT4 ‘ INT3 INT2 INT1 INTO ‘

¢ INTn: External Interrupt n

0: The external interrupt triggers on falling edge.

1: The external interrupt triggers on rising edge.
¢ NMI: Non-Maskable Interrupt

0: The Non-Maskable Interrupt triggers on falling edge.
1: The Non-Maskable Interrupt triggers on rising edge.

32072A-AVR32-03/09

ATMEL

112

12.7.8 Level Register

Name: LEVEL

Access Type: Read/Write

Offset: 0x01C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt triggers on low level.

1: The external interrupt triggers on high level.

¢ NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt triggers on low level.

1: The Non-Maskable Interrupt triggers on high level.

A “'lEl,® 113

32072A-AVR32-03/09

12.7.9 Filter Register

Name: FILTER

Access Type: Read/Write

Offset: 0x020

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt is not filtered.

1: The external interrupt is filtered.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is not filtered.

1: The Non-Maskable Interrupt is filtered.

A “'lEl,® 114

32072A-AVR32-03/09

12.7.10 Test Register

Name: TEST

Access Type: Read/Write

Offset: 0x024

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

T - - - -]
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 INTS INT4 INT3 INT2 INT1 INTO ‘

« TESTEN: Test Enable

0: This bit disables external interrupt test mode.
1: This bit enables external interrupt test mode.
¢ INTn: External Interruptn

If TESTEN is 1, the value written to this bit will be the value to the interrupt detector and the value on the pad will be ignored.

« NMI: Non-Maskable Interrupt

If TESTEN is 1, the value written to this bit will be the value to the interrupt detector and the value on the pad will be ignored.

32072A-AVR32-03/09

ATMEL

115

12.7.11 Asynchronous Register

Name: ASYNC

Access Type: Read/Write

Offset: 0x028

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt is synchronized to CLK_SYNC.

1: The external interrupt is asynchronous.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is synchronized to CLK_SYNC

1: The Non-Maskable Interrupt is asynchronous.

A “'lEl,® 116

32072A-AVR32-03/09

12.7.12 Scan Register

Name: SCAN
Access Type: Read/Write
Offset: 0x2C
Reset Value: 0x0000000
31 30 29 28 27 26 25 24
. - - [-7 - [- /] PIN[2) |
23 22 21 20 19 18 17 16
[I I B R -]
15 14 13 12 11 10 9 8
‘] ‘] ‘] ‘ PRESC[4:0] ‘
7 6 5 4 3 2 1 0
I R R - - - o
* EN

0: Keypad scanning is disabled
1: Keypad scanning is enabled
* PRESC
Prescale select for the keypad scan rate:
Scan rate = 2(SCAN:PRESC+1) Tre
The RC clock period can be found in the Electrical Characteristics section.
* PIN
The index of the currently active scan pin. Writing to this bitfield has no effect.

AIMEL 17

32072A-AVR32-03/09 I ©

12.7.13 Enable Register

Name: EN

Access Type: Write-only

Offset: 0x030

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will enable the corresponding external interrupt.

« NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will enable the Non-Maskable Interrupt.

A “'lEl,® 118

32072A-AVR32-03/09

12.7.14 Disable Register

Name: DIS

Access Type: Write-only

Offset: 0x034

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will disable the corresponding external interrupt.

« NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will disable the Non-Maskable Interrupt.

A “'lEl,® 119

32072A-AVR32-03/09

12.7.15 Control Register

Name: CTRL

Access Type: Read-only

Offset: 0x038

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The corresponding external interrupt is disabled.

1: The corresponding external interrupt is enabled.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is disabled.

1: The Non-Maskable Interrupt is enabled.

A “'lEl,® 120

32072A-AVR32-03/09

13. Flash Controller (FLASHC)
Rev: 2.1.04

13.1 Features

e Controls flash block with dual read ports allowing staggered reads.

e Supports 0 and 1 wait state bus access.

* Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per
clock cycle.

* 32-bit HSB interface for reads from flash array and writes to page buffer.

e 32-bit PB interface for issuing commands to and configuration of the controller.

* 16 lock bits, each protecting a region consisting of (total number of pages in the flash block / 16)
pages.

* Regions can be individually protected or unprotected.

* Additional protection of the Boot Loader pages.

* Supports reads and writes of general-purpose NVM bits.

* Supports reads and writes of additional NVM pages.

e Supports device protection through a security bit.

* Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing
flash and clearing security bit.

* Interface to Power Manager for power-down of flash-blocks in sleep mode.

13.2 Overview
The flash controller (FLASHC) interfaces a flash block with the 32-bit internal High-Speed Bus
(HSB). Performance for uncached systems with high clock-frequency and one wait state is
increased by placing words with sequential addresses in alternating flash subblocks. Having one
read interface per subblock allows them to be read in parallel. While data from one flash sub-
block is being output on the bus, the sequential address is being read from the other flash
subblock and will be ready in the next clock cycle.

The controller also manages the programming, erasing, locking and unlocking sequences with
dedicated commands.

13.3 Product dependencies

13.3.1 Power Manager
The FLASHC has two bus clocks connected: One High speed bus clock (CLK_FLASHC_HSB)
and one Peripheral bus clock (CLK_FLASHC_PB). These clocks are generated by the Power
manager. Both clocks are turned on by default, but the user has to ensure that
CLK_FLASHC_HSB is not turned off before reading the flash or writing the pagebuffer and that
CLK_FLASHC_PB is not turned off before accessing the FLASHC configuration and control
registers.

13.3.2 Interrupt Controller
The FLASHC interrupt lines are connected to internal sources of the interrupt controller. Using
FLASHC interrupts requires the interrupt controller to be programmed first.

AIMEL 121

32072A-AVR32-03/09 I ©

13.4 Functional description

13.4.1

13.4.2

13.4.3

13.4.4

Bus interfaces

The FLASHC has two bus interfaces, one HSB interface for reads from the flash array and writes
to the page buffer, and one Peripheral Bus (PB) interface for writing commands and control to
and reading status from the controller.

Memory organization

User page

To maximize performance for high clock-frequency systems, FLASHC interfaces to a flash block
with two read ports. The flash block has several parameters, given by the design of the flash
block. Refer to the “Memories” chapter for the device-specific values of the parameters.

* p pages (FLASH_P)

< w words in each page and in the page buffer (FLASH_W)

e pw words in total (FLASH_PW)

« f general-purpose fuse bits (FLASH_F)

« 1 security fuse bit

« 1 User Page

The User page is an additional page, outside the regular flash array, that can be used to store
various data, like calibration data and serial numbers. This page is not erased by regular chip
erase. The User page can only be written and erased by proprietary commands. Read accesses
to the User page is performed just as any other read access to the flash. The address map of the
User page is given in Figure 13-1.

Read operations

32072A-AVR32-03/09

The FLASHC provides two different read modes:

« 0 wait state (Ows) for clock frequencies < (access time of the flash plus the bus delay)
« 1 wait state (1ws) for clock frequencies < (access time of the flash plus the bus delay)/2

Higher clock frequencies that would require more wait states are not supported by the flash
controller.

The programmer can select the wait states required by writing to the FWS field in the Flash Con-
trol Register (FCR). It is the responsibility of the programmer to select a number of wait states
compatible with the clock frequency and timing characteristics of the flash block.

In Ows mode, only one of the two flash read ports is accessed. The other flash read port is idle.
In 1ws mode, both flash read ports are active. One read port reading the addressed word, and
the other reading the next sequential word.

If the clock frequency allows, the user should use Ows mode, because this gives the lowest
power consumption for low-frequency systems as only one flash read port is read. Using 1ws
mode has a power/performance ratio approaching Ows mode as the clock frequency
approaches twice the max frequency of Ows mode. Using two flash read ports use twice the
power, but also give twice the performance.

Alm L 122

Y 5

The flash controller supports flash blocks with up to 2*21 word addresses, as displayed in Figure
13-1. Reading the memory space between address pw and 2*21-1 returns an undefined result.
The User page is permanently mapped to word address 2"21.

Table 13-1. User row addresses

Memory type Start address, byte sized Size
Main array 0 pw words = 4pw bytes
User 2723 = 8388608 128 words = 512 bytes

Figure 13-1. Memory map for the Flash memories

All addresses are word addresses

2721+12 Unused
2"2? User page
o
Q
n
S
c
D
pw-1
)
@
g
W]
§e)
c
7}
K
LL
0
Flash with

extra page

13.4.5 Quick Page Read
A dedicated command, Quick Page Read (QPR), is provided to read all words in an addressed
page. All bits in all words in this page are AND’ed together, returning a 1-bit result. This result is
placed in the Quick Page Read Result (QPRR) bit in Flash Status Register (FSR). The QPR
command is useful to check that a page is in an erased state. The QPR instruction is much
faster than performing the erased-page check using a regular software subroutine.

13.4.6 Write page buffer operations
The internal memory area reserved for the embedded flash can also be written through a write-
only page buffer. The page buffer is addressed only by the address bits required to address w
words (since the page buffer is word addressable) and thus wrap around within the internal
memory area address space and appear to be repeated within it.

When writing to the page buffer, the PAGEN field in the Flash Command register (FCMD) is
updated with the page number corresponding to page address of the latest word written into the

page buffer.
Alm L 123

32072A-AVR32-03/09 I ©

13.4.7

The page buffer is also used for writes to the User page.

Write operations can be prevented by programming the Memory Protection Unit of the CPU.
Writing 8-bit and 16-bit data to the page buffer is not allowed and may lead to unpredictable data
corruption.

Page buffer write operations are performed with 4 wait states.

Writing to the page buffer can only change page buffer bits from one to zero, i.e. writing
Oxaaaaaaaa to a page buffer location that has the value 0x00000000, will not change the page
buffer value. The only way to change a bit from zero to one, is to reset the entire page buffer with
the Clear Page Buffer command.

The page buffer is not automatically reset after a page write. The programmer should do this
manually by issuing the Clear Page Buffer flash command. This can be done after a page write,
or before the page buffer is loaded with data to be stored to the flash page.

Example: Writing a word into word address 130 of a flash with 128 words in the page buffer.
PAGEN will be updated with the value 1, and the word will be written into word 2 in the page
buffer.

Writing words to a page that is not completely erased

This can be used for EEPROM emulation, i.e. writes with granularity of one word instead of an
entire page. Only words that are in an completely erased state (OxFFFFFFFF) can be changed.
The procedure is as follows:

1. Clear page buffer

2. Write to the page buffer the result of the logical bitwise AND operation between the
contents of the flash page and the new data to write. Only words that were in an erased
state can be changed from the original page.

3. Write Page.

13.5 Flash commands

32072A-AVR32-03/09

The FLASHC offers a command set to manage programming of the flash memory, locking and
unlocking of regions, and full flash erasing. See chapter 13.8.2 for a complete list of commands.

To run a command, the field FCMD.CMD has to be written with the command number. As soon
as FCMD is written, the FRDY bit is automatically cleared. Once the current command is com-
plete, the FRDY bit is automatically set. If an interrupt has been enabled by setting the bit FRDY
in FCR, the interrupt line of the flash controller is activated. All flash commands except for Quick
Page Read (QPR) will generate an interrupt request upon completion if FRDY is set.

After a command has been written to FCMD, the programming algorithm should wait until the
command has been executed before attempting to read instructions or data from the flash or
writing to the page buffer, as the flash will be busy. The waiting can be performed either by poll-
ing the Flash Status Register (FSR) or by waiting for the flash ready interrupt. The command
written to FCMD is initiated on the first clock cycle where the HSB bus interface in FLASHC is
IDLE. The user must make sure that the access pattern to the FLASHC HSB interface contains
an IDLE cycle so that the command is allowed to start. Make sure that no bus masters such as
DMA controllers are performing endless burst transfers from the flash. Also, make sure that the
CPU does not perform endless burst transfers from flash. This is done by letting the CPU enter
sleep mode after writing to FCMD, or by polling FSR for command completion. This polling will
result in an access pattern with IDLE HSB cycles.

Alm L 124

Y 5

All the commands are protected by the same keyword, which has to be written in the eight high-
est bits of FCMD. Writing FCMD with data that does not contain the correct key and/or with an
invalid command has no effect on the flash memory; however, the PROGE bit is set in FSR. This
bit is automatically cleared by a read access to FSR.

Writing a command to FCMD while another command is being executed has no effect on the
flash memory; however, the PROGE bit is set in FSR. This bit is automatically cleared by a read
access to FSR.

If the current command writes or erases a page in a locked region, or a page protected by the
BOOTPROT fuses, the command has no effect on the flash memory; however, the LOCKE bit is
setin FSR . This bit is automatically cleared by a read access to FSR.

135.1 Write/erase page operation

Flash technology requires that an erase must be done before programming. The entire flash can
be erased by an Erase All command. Alternatively, pages can be individually erased by the
Erase Page command.

The User page can be written and erased using the mechanisms described in this chapter.

After programming, the page can be locked to prevent miscellaneous write or erase sequences.
Locking is performed on a per-region basis, so locking a region locks all pages inside the region.
Additional protection is provided for the lowermost address space of the flash. This address
space is allocated for the Boot Loader, and is protected both by the lock bit(s) corresponding to
this address space, and the BOOTPROT][2:0] fuses.

Data to be written are stored in an internal buffer called page buffer. The page buffer contains w
words. The page buffer wraps around within the internal memory area address space and
appears to be repeated by the number of pages in it. Writing of 8-bit and 16-bit data to the page
buffer is not allowed and may lead to unpredictable data corruption.

Data must be written to the page buffer before the programming command is written to FCMD.
The sequence is as follows:

» Reset the page buffer with the Clear Page Buffer command.
« Fill the page buffer with the desired contents, using only 32-bit access.

* Programming starts as soon as the programming key and the programming command are
written to the Flash Command Register. The FCMD.PAGEN field must contain the address of
the page to write. PAGEN is automatically updated when writing to the page buffer, but can
also be written to directly. The FRDY bit in FSR is automatically cleared when the page write
operation starts.

* When programming is completed, the bit FRDY in FSR is set. If an interrupt was enabled by
setting the bit FRDY in FCR, the interrupt line of the flash controller is set.

Two errors can be detected in FSR after a programming sequence:

» Programming Error: A bad keyword and/or an invalid command have been written in FCMD.

« Lock Error: The page to be programmed belongs to a locked region. A command must be
executed to unlock the corresponding region before programming can start.

13.5.2 Erase All operation

32072A-AVR32-03/09

The entire memory is erased if the Erase All command (EA) is written to FCMD. Erase All erases
all bits in the flash array. The User page is not erased. All flash memory locations, the general-
purpose fuse bits, and the security bit are erased (reset to OxFF) after an Erase All.

Alm L 125

Y 5

The EA command also ensures that all volatile memories, such as register file and RAMs, are
erased before the security bit is erased.

Erase All operation is allowed only if no regions are locked, and the BOOTPROT fuses are pro-
grammed with a region size of 0. Thus, if at least one region is locked, the bit LOCKE in FSR is
set and the command is cancelled. If the bit LOCKE has been written to 1 in FCR, the interrupt
line rises.

When the command is complete, the bit FRDY bit in FSR is set. If an interrupt has been enabled
by setting the bit FRDY in FCR, the interrupt line of the flash controller is set. Two errors can be
detected in FSR after issuing the command:

* Programming Error: A bad keyword and/or an invalid command have been written in FCMD.

 Lock Error: At least one lock region to be erased is protected, or BOOTPROT is different from
0. The erase command has been refused and no page has been erased. A Clear Lock Bit
command must be executed previously to unlock the corresponding lock regions.

13.5.3 Region lock bits

The flash block has p pages, and these pages are grouped into 16 lock regions, each region
containing p/16 pages. Each region has a dedicated lock bit preventing writing and erasing
pages in the region. After production, the device may have some regions locked. These locked
regions are reserved for a boot or default application. Locked regions can be unlocked to be
erased and then programmed with another application or other data.

To lock or unlock a region, the commands Lock Region Containing Page (LP) and Unlock
Region Containing Page (UP) are provided. Writing one of these commands, together with the
number of the page whose region should be locked/unlocked, performs the desired operation.

One error can be detected in FSR after issuing the command:

» Programming Error: A bad keyword and/or an invalid command have been written in FCMD.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
lock bits can also be set/cleared using the commands for writing/erasing general-purpose fuse
bits, see chapter 13.6. The general-purpose bit being in an erased (1) state means that the
region is unlocked.

The lowermost pages in the Flash can additionally be protected by the BOOTPROT fuses, see
Section 13.6.

13.6 General-purpose fuse bits

32072A-AVR32-03/09

Each flash block has a number of general-purpose fuse bits that the application programmer can
use freely. The fuse bits can be written and erased using dedicated commands, and read

Alm L 126

Y 5

through a dedicated Peripheral Bus address. Some of the general-purpose fuse bits are
reserved for special purposes, and should not be used for other functions.:

Table 13-2. General-purpose fuses with special functions

General-

Purpose fuse

number Name Usage

15:0 LOCK Region lock bits.
External Privileged Fetch Lock. Used to prevent the CPU from
fetching instructions from external memories when in privileged
mode. This bit can only be changed when the security bit is
cleared. The address range corresponding to external
memories is device-specific, and not known to the flash
controller. This fuse bit is simply routed out of the CPU or bus
system, the flash controller does not treat this fuse in any
special way, except that it can not be altered when the security

16 EPFL bit is set.

If the security bit is set, only an external JTAG Chip Erase can
clear EPFL. No internal commands can alter EPFL if the
security bit is set.

When the fuse is erased (i.e. "1"), the CPU can execute
instructions fetched from external memories. When the fuse is
programmed (i.e. "0"), instructions can not be executed from
external memories.

Used to select one of eight different boot loader sizes. Pages
included in the bootlegger area can not be erased or
programmed except by a JTAG chip erase. BOOTPROT can
only be changed when the security bit is cleared.

19:17 BOOTPROT If the security bit is set, only an external JTAG Chip Erase can
clear BOOTPROT, and thereby allow the pages protected by
BOOTPROT to be programmed. No internal commands can
alter BOOTPROT or the pages protected by BOOTPROT if the
security bit is set.

The BOOTPROT fuses protects the following address space for the Boot Loader:

Table 13-3. Boot Loader area specified by BOOTPROT

Pages protected by Size of protected

BOOTPROT BOOTPROT memory

7 None 0

6 0-1 1kByte

5 0-3 2kByte

4 0-7 4kByte

3 0-15 8kByte

2 0-31 16kByte

1 0-63 32kByte

0 0-127 64kByte

AIMEL 127

32072A-AVR32-03/09 I ©

13.7 Security bit

32072A-AVR32-03/09

To erase or write a general-purpose fuse bit, the commands Write General-Purpose Fuse Bit
(WGPB) and Erase General-Purpose Fuse Bit (EGPB) are provided. Writing one of these com-
mands, together with the number of the fuse to write/erase, performs the desired operation.

An entire General-Purpose Fuse byte can be written at a time by using the Program GP Fuse
Byte (PGPFB) instruction. A PGPFB to GP fuse byte 2 is not allowed if the flash is locked by the
security bit. The PFB command is issued with a parameter in the PAGEN field:

¢ PAGEN][2:0] - byte to write

« PAGEN][10:3] - Fuse value to write
All General-Purpose fuses can be erased by the Erase All General-Purpose fuses (EAGP) com-
mand. An EAGP command is not allowed if the flash is locked by the security bit.
Two errors can be detected in FSR after issuing these commands:

« Programming Error: A bad keyword and/or an invalid command have been written in FCMD.

« Lock Error: A write or erase of any of the special-function fuse bits in Table 13-3 was
attempted while the flash is locked by the security bit.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
the 16 lowest general-purpose fuse bits can also be written/erased using the commands for
locking/unlocking regions, see Section 13.5.3.

The security bit allows the entire chip to be locked from external JTAG or other debug access for
code security. The security bit can be written by a dedicated command, Set Security Bit (SSB).
Once set, the only way to clear the security bit is through the JTAG Chip Erase command.

Once the Security bit is set, the following Flash controller commands will be unavailable and
return a lock error if attempted:

« Write General-Purpose Fuse Bit (WGPB) to BOOTPROT or EPFL fuses
» Erase General-Purpose Fuse Bit (EGPB) to BOOTPROT or EPFL fuses
* Program General-Purpose Fuse Byte (PGPFB) of fuse byte 2
« Erase All General-Purpose Fuses (EAGPF)

One error can be detected in FSR after issuing the command:

» Programming Error: A bad keyword and/or an invalid command have been written in FCMD.

Alm L 128

Y 5

13.8 User Interface

Table 13-4. FLASHC Register Memory Map

Offset Register Name Access Reset
0x0 Flash Control Register FCR R/W 0
0x4 Flash Command Register FCMD R/W 0
0x8 Flash Status Register FSR R/W 0™
Oxc Flash General Purpose Fuse Register Hi FGPFRHI R NA (%)
0x10 Flash General Purpose Fuse Register Lo FGPFRLO R NA (*)

32072A-AVR32-03/09

(*) The value of the Lock bits is dependent of their programmed state. All other bits in FSR are 0.
All bits in FGPFR and FCFR are dependent on the programmed state of the fuses they map to.

Any bits in these registers not mapped to a fuse read 0.

ATMEL

Y 5

129

13.8.1 Flash Control Register

Name: FCR

Access Type: Read/Write

Offset: 0x00

Reset value: 0x00000000
31 30 29 28 27 26 25 24

- - - r - - & - [- [- /|
23 22 21 20 19 18 17 16

I S D I e e
15 14 13 12 11 10 9 8

- - - r - - & - [- [- /|
7 6 5 4 3 2 1 0

‘ - ‘ FWS ‘ - ‘ - ‘PROGE ‘ LOCKE ‘ - ‘ FRDY ‘

¢ FRDY: Flash Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.

1: Flash Ready generates an interrupt.

¢« LOCKE: Lock Error Interrupt Enable
0: Lock Error does not generate an interrupt.

1: Lock Error generates an interrupt.

¢ PROGE: Programming Error Interrupt Enable
0: Programming Error does not generate an interrupt.

1: Programming Error generates an interrupt.

¢ FWS: Flash Wait State
0: The flash is read with 0 wait states.

1: The flash is read with 1 wait state.

AIMEL 130

32072A-AVR32-03/09 I ©

13.8.2 Flash Command Register

Name: FCMD
Access Type: Read/Write
Offset: 0x04

Reset value: 0x00000000

FCMD can not be written if the flash is in the process of performing a flash command. Doing so

will cause the FCR write to be ignored, and the PROGE bit to be set.

31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

‘ PAGEN [15:8] ‘
15 14 13 12 11 10 9 8

‘ PAGEN [7:0] ‘
7 6 5 4 3 2 1 0

CMD

¢ CMD: Command

This field defines the flash command. Issuing any unused command will cause the Programming Error bit to be set, and the
corresponding interrupt to be requested if FCR.PROGE is set.

Table 13-5. Set of commands

Command Value Mnemonic
No operation 0 NOP
Write Page 1 WP
Erase Page 2 EP
Clear Page Buffer 3 CPB
Lock region containing given Page 4 LP
Unlock region containing given Page 5 UP
Erase All 6 EA
Write General-Purpose Fuse Bit 7 WGPB
Erase General-Purpose Fuse Bit 8 EGPB
Set Security Bit 9 SSB
Program GP Fuse Byte 10 PGPFB
Erase All GPFuses 11 EAGPF
Quick Page Read 12 QPR
Write User Page 13 WUP
Erase User Page 14 EUP
r
32072A-AVR32-03/09 A_“IEL@

131

Table 13-5. Set of commands

Command Value Mnemonic
Quick Page Read User Page 15 QPRUP
High Speed Mode Enable 16 HSEN
High Speed Mode Disable 17 HSDIS

¢ PAGEN: Page number

The PAGEN field is used to address a page or fuse bit for certain operations. In order to simplify programming, the PAGEN field
is automatically updated every time the page buffer is written to. For every page buffer write, the PAGEN field is updated with the

page number of the address being written to. Hardware automatically masks writes to the PAGEN field so that only bits
representing valid page numbers can be written, all other bits in PAGEN are always 0. As an example, in a flash with 1024

pages (page 0 - page 1023), bits 15:10 will always be 0.

Table 13-6. Semantic of PAGEN field in different commands

Command

PAGEN description

No operation

Not used

Write Page

The number of the page to write

Clear Page Buffer

Not used

Lock region containing given Page

Page number whose region should be locked

Unlock region containing given Page

Page number whose region should be unlocked

Erase All Not used
Write General-Purpose Fuse Bit GPFUSE #
Erase General-Purpose Fuse Bit GPFUSE #
Set Security Bit Not used

Program GP Fuse Byte

WriteData[7:0], ByteAddress[2:0]

Erase All GP Fuses

Not used

Quick Page Read

Page number

Write User Page Not used
Erase User Page Not used
Quick Page Read User Page Not used
High Speed Mode Enable Not used
High Speed Mode Disable Not used

« KEY: Write protection key

This field should be written with the value OxA5 to enable the command defined by the bits of the register. If the field is written
with a different value, the write is not performed and no action is started.

This field always reads as O.

32072A-AVR32-03/09

ATMEL

Y 5

132

13.8.3 Flash Status Register

Name: FSR

Access Type: Read/Write

Offset: 0x08

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ LOCK15 ‘ LOCK14 ‘ LOCK13 ‘ LOCK12 ‘ LOCK11 ‘ LOCK10 ‘ LOCK9 ‘ LOCK8 ‘
23 22 21 20 19 18 17 16

‘ LOCK7 ‘ LOCK6 ‘ LOCK5 ‘ LOCK4 ‘ LOCK3 ‘ LOCK2 ‘ LOCK1 ‘ LOCKO ‘
15 14 13 12 11 10 9 8

| I I R B B
7 6 5 4 3 2 1 0

‘ - HSEN QPRR ‘ SECURITY ‘ PROGE ‘ LOCKE ‘ - ‘ FRDY ‘

¢ FRDY: Flash Ready Status
0: The flash controller is busy and the application must wait before running a new command.

1: The flash controller is ready to run a new command.

« LOCKE: Lock Error Status
Automatically cleared when FSR is read.

0: No programming of at least one locked lock region has happened since the last read of FSR.
1: Programming of at least one locked lock region has happened since the last read of FSR.

« PROGE: Programming Error Status
Automatically cleared when FSR is read.

0: No invalid commands and no bad keywords were written in FCMD.
1: An invalid command and/or a bad keyword was/were written in FCMD.

e SECURITY: Security Bit Status
0: The security bit is inactive.

1: The security bit is active.

¢« QPRR: Quick Page Read Result
0: The result is zero, i.e. the page is not erased.

1: The result is one, i.e. the page is erased.

¢« HSEN: High Speed Mode Enable
0: High Speed Mode disabled.

1: High Speed Mode enabled.

AIMEL 133

32072A-AVR32-03/09 I ©

¢ FSZ: Flash Siz

The size of the flash. Not all device families will provide all flash sizes indicated in the table.

e

Table 13-7. Flash size

FSz

Flash Size

32 Kbytes

64 Kbytes

128 Kbytes

256 Kbytes

384 Kbytes

512 Kbytes

768 Kbytes

N o | o~ WwWIN |k | O

1024 Kbytes

« LOCKXx: Lock Region x Lock Status
0: The corresponding lock region is not locked.

1: The corresponding lock region is locked.

32072A-AVR32-03/09

ATMEL

Y 5

134

13.8.4 Flash General Purpose Fuse Register High

Name: FGPFRHI

Access Type: Read

Offset: 0x0C

Reset value: N/A
31 30 29 28 27 26 25 24

‘ GPF63 ‘ GPF62 ‘ GPF61 ‘ GPF60 ‘ GPF59 GPF58 GPF57 GPF56 ‘
23 22 21 20 19 18 17 16

‘ GPF55 ‘ GPF54 ‘ GPF53 ‘ GPF52 ‘ GPF51 GPF50 GPF49 GPF48 ‘
15 14 13 12 11 10 9 8

‘ GPF47 ‘ GPF46 ‘ GPF45 ‘ GPF44 ‘ GPF43 GPF42 GPF41 GPF40 ‘
7 6 5 4 3 2 1 0

‘ GPF39 ‘ GPF38 ‘ GPF37 ‘ GPF36 ‘ GPF35 GPF34 GPF33 GPF32 ‘

This register is only used in systems with more than 32 GP fuses.
¢ GPFxx: General Purpose Fuse xx

0: The fuse has a written/programmed state.

1: The fuse has an erased state.

32072A-AVR32-03/09

ATMEL

Y 5

135

13.8.5 Flash General Purpose Fuse Register Low

Name: FGPFRLO

Access Type: Read

Offset: 0x10

Reset value: N/A
31 30 29 28 27 26 25 24

‘ GPF31 ‘ GPF30 ‘ GPF29 ‘ GPF28 GPF27 GPF26 GPF25 GPF24 ‘
23 22 21 20 19 18 17 16

‘ GPF23 ‘ GPF22 ‘ GPF21 ‘ GPF20 GPF19 GPF18 GPF17 GPF16 ‘
15 14 13 12 11 10 9 8

‘ GPF15 ‘ GPF14 ‘ GPF13 ‘ GPF12 GPF11 GPF10 GPF09 GPF08 ‘
7 6 5 4 3 2 1 0

‘ GPFO7 ‘ GPF06 ‘ GPF05 ‘ GPF04 GPF03 GPF02 GPFO1 GPFO00 ‘

¢ GPFxx: General Purpose Fuse xx
0: The fuse has a written/programmed state.

1: The fuse has an erased state.

32072A-AVR32-03/09

ATMEL

136

13.9 Fuses Settings

The flash block contains 64 general purpose fuses. These 64 fuses can be found in the Flash
General Purpose Fuse Register Low (FGPFRLO) and in the Flash General Purpose Fuse Reg-
ister High (FGPFRHI) of the Flash Controller (FLASHC).

Some of the FGPFRLO fuses have defined meanings outside the FLASHC and are described in
this section.

The general purpose fuses are set by a JTAG chip erase.

13.9.1 Flash General Purpose Fuse Register Low (FGPFRLO)

Table 13-8. FGPFRLO Register Description

31 30 29 28 27 26 25 24

‘ GPF31 GPF30 GPF29 BODEN BODHYST BODLEVEL[5:4] ‘
23 22 21 20 19 18 17 16

‘ BODLEVEL([3:0] BOOTPROT EPFL ‘
15 14 13 12 11 10 9 8

‘ LOCK][15:8] ‘
7 6 5 4 3 2 1 0

‘ LOCK][7:0] ‘

« BODEN: Brown Out Detector Enable

Table 13-9. BODEN Field Description

BODEN Description

0x0 Brown Out Detector (BOD) disabled
0x1 BOD enabled, BOD reset enabled
0x2 BOD enabled, BOD reset disabled
0x3 BOD disabled

« BODHYST: Brown Out Detector Hystersis
0: The BOD hysteresis is disabled

1: The BOD hysteresis is enabled

« BODLEVEL: Brown Out Detector Trigger Level
This controls the voltage trigger level for the Brown out detector. For value description refer to Electrical

Characteristics chapter.

If the BODLEVEL is set higher than VDDCORE and enabled by fuses, the part will be in constant reset. To recover
from this situation, apply an external voltage on VDDCORE that is higher than the BOD Trigger level and disable
the BOD.

* LOCK, EPFL, BOOTPROT
These are Flash controller fuses and are described in the FLASHC chapter.

Alm L 137

32072A-AVR32-03/09 I ©

13.9.2 Default Fuse Value

The devices are shipped with the FGPFRLO register value: OXFFF7FFFF:
* GPF31 fuse set to Ob1. This fuse is used by the pre-programmed USB bootloader.
* GPF30 fuse set to Ob1. This fuse is used by the pre-programmed USB bootloader.
* GPF29 fuse set to Ob1.
* BODEN fuses set to Ob11. BOD is disabled.
* BODHYST fuse set to Ob1. The BOD hystersis is enabled.
« BODLEVEL fuses setto 0b111111. This is the minimum voltage trigger level for BOD.
« BOOTPROT fuses set to 0b011. The bootloader protected size is 8 KBytes.
» EPFL fuse set to Ob1. External privileged fetch is not locked.
* LOCK fuses setto 0b1111111111111111. No region locked.

See also the AT32UC3A3 Bootloader user guide document.

After the JTAG chip erase command, the FGPFRLO register value is OXFFFFFFFF.
13.10 Module configuration

The specific configuration for the FLASHC instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks according to the table in the
Power Manager section.

Table 13-10. Module Configuration

Feature FLASH
Flash size 256Kbytes
Number of 512

pages

Page size 512 bytes

Table 13-11. Module Clock Name

Module name Clock name Clock name

FLASHC CLK_FLASHC_HSB CLK_FLASHC_PB

Alm L 138

32072A-AVR32-03/09 I ©

14. HSB Bus Matrix (HMATRIX)

Rev: 2.3.0.2

14.1 Features
e User Interface on peripheral bus
* Configurable Number of Masters (Up to sixteen)
* Configurable Number of Slaves (Up to sixteen)
* One Decoder for Each Master
* Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
* One Remap Function for Each Master
* Programmable Arbitration for Each Slave
— Round-Robin
— Fixed Priority
* Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
* One Cycle Latency for the First Access of a Burst
e Zero Cycle Latency for Default Master
* One Special Function Register for Each Slave (Not dedicated)

14.2 Overview

The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

14.3 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

14.3.1 Clocks

The clock for the HMATRIX bus interface (CLK_HMATRIX) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the HMATRIX before disabling the clock, to avoid freezing the HMATRIX in an undefined
state.

14.4 Functional Description

14.4.1 Memory Mapping

The Bus Matrix provides one decoder for every HSB Master Interface. The decoder offers each
HSB Master several memory mappings. In fact, depending on the product, each memory area

AIMEL 139

32072A-AVR32-03/09 I ©

14.4.2

14421

14.4.2.2

14.4.2.3

14.4.3

may be assigned to several slaves. Booting at the same address while using different HSB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

Special Bus Granting Mechanism

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

Fixed Default Master

Arbitration

32072A-AVR32-03/09

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)
2. Fixed Priority Arbitration
This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

Alm L 140

Y 5

When a re-arbitration must be done, specific conditions apply. See Section 14.4.3.1 "Arbitration
Rules” on page 141.

14.4.3.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. lIdle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For

defined length burst, predicted end of burst matches the size of the transfer but is man-

aged differently for undefined length burst. See Section “«” on page 141.

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that

the current master access is too long and must be broken. See Section “«” on page 141.

« Undefined Length Burst Arbitration
In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:
1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.
2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.
3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.
4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

« Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

Alm L 141

32072A-AVR32-03/09 I ©

14.4.3.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

1. Round-Robin arbitration without default master
2. Round-Robin arbitration with last default master
3. Round-Robin arbitration with fixed default master
* Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

* Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

* Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

14.4.3.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

14.4.4 Slave and Master assighation

The index number assigned to Bus Matrix slaves and masters are described in Memories

chapter.
ATMEL 142

32072A-AVR32-03/09 I ©

145 User Interface

Table 14-1. HMATRICX Register Memory Map
Offset Register Name Access Reset Value
0x0000 Master Configuration Register 0 MCFGO Read/Write 0x00000002
0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002
0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002
0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002
0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002
0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002
0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002
0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002
0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002
0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002
0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002
0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002
0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002
0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002
0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002
0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002
0x0040 Slave Configuration Register 0 SCFGO Read/Write 0x00000010
0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010
0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010
0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010
0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010
0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010
0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010
0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010
0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010
0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010
0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010
0x0080 Priority Register A for Slave 0 PRASO Read/Write 0x00000000
0x0084 Priority Register B for Slave 0 PRBSO Read/Write 0x00000000
0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000
AIMEL 143
32072A-AVR32-03/09 O

Table 14-1. HMATRICX Register Memory Map (Continued)

Offset Register Name Access Reset Value
0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000
0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000
0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000
0x0098 Priority Register A for Slave 3 PRAS3 Read/Write 0x00000000
0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000
0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000
0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000
0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000
0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000
0x00B0O Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000
0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000
0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000
0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000
0x00CO0 Priority Register A for Slave 8 PRAS8 Read/Write 0x00000000
0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000
0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000
0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000
0x00DO0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000
0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000
0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000
0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000
0x00EO Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000
O0x00E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000
OxO0E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000
O0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000
0x00FO0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000
0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000
0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000
0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000
0x0100 Master Remap Control Register MRCR Read/Write 0x00000000
0x0110 Special Function Register 0 SFRO Read/Write -

0x0114 Special Function Register 1 SFR1 Read/Write -

0x0118 Special Function Register 2 SFR2 Read/Write -

0x011C Special Function Register 3 SFR3 Read/Write -

0x0120 Special Function Register 4 SFR4 Read/Write -

0x0124 Special Function Register 5 SFR5 Read/Write -

AIMEL 144
32072A-AVR32-03/09 O

Table 14-1. HMATRICX Register Memory Map (Continued)

Offset Register Name Access Reset Value
0x0128 Special Function Register 6 SFR6 Read/Write -
0x012C Special Function Register 7 SFR7 Read/Write -
0x0130 Special Function Register 8 SFR8 Read/Write -
0x0134 Special Function Register 9 SFR9 Read/Write -
0x0138 Special Function Register 10 SFR10 Read/Write -
0x013C Special Function Register 11 SFR11 Read/Write -
0x0140 Special Function Register 12 SFR12 Read/Write -
0x0144 Special Function Register 13 SFR13 Read/Write -
0x0148 Special Function Register 14 SFR14 Read/Write -
0x014C Special Function Register 15 SFR15 Read/Write -

AIMEL 145

32072A-AVR32-03/09 I ©

145.1 Master Configuration Registers

Name: MCFGO...MCFG15

Access Type: Read/Write

Offset: 0x00 - 0x3C

Reset Value: 0x00000002
31 30 29 28 27 26 25 24

I R S - -]
23 22 21 20 19 18 17 16

T 1T — S - -]
15 14 13 12 11 10 9 8

1T -1 = S - -]
7 6 5 4 3 2 1 0

- - - | - ULBT |

e ULBT: Undefined Length Burst Type
0: Infinite Length Burst
No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.

1: Single Access
The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.

4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

32072A-AVR32-03/09

ATMEL

Y 5

146

14.5.2 Slave Configuration Registers

Name: SCFGO0...SCFG15

Access Type: Read/Write

Offset: 0x40 - Ox7C

Reset Value: 0x00000010
31 30 29 28 27 26 25 24

- T - 1T - - - SR ARET]
23 22 21 20 19 18 17 16

| — | — | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

- T T - - - G —]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

* ARBT: Arbitration Type
0: Round-Robin Arbitration
1: Fixed Priority Arbitration
* FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

e DEFMSTR_TYPE: Default Master Type
0: No Default Master
At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one cycle latency for the first access of a burst transfer or for a single access.
1: Last Default Master
At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master having
accessed it.
This results in not having one cycle latency when the last master tries to access the slave again.
2: Fixed Default Master
At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the number
that has been written in the FIXED_DEFMSTR field.
This results in not having one cycle latency when the fixed master tries to access the slave again.
e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking a very slow slave when very long bursts are used.
This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without performing
any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

AIMEL 147

32072A-AVR32-03/09 I ©

1453

Register Name:

Bus Matrix Priority Registers A For Slaves

PRASO...PRAS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| M7PR [M6PR |
23 22 21 20 19 18 17 16

| M5PR | M4PR |
15 14 13 12 11 10 9 8

| M3PR | M2PR |
7 6 5 4 3 2 1 0

| M1PR | MOPR |

* MxPR: Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

32072A-AVR32-03/09

ATMEL

Y 5

148

14.5.4 Priority Registers B For Slaves

Name: PRBSO0...PRBS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| M15PR | M14PR |
23 22 21 20 19 18 17 16

| M13PR | M12PR |
15 14 13 12 11 10 9 8

| M11PR | M10PR |
7 6 5 4 3 2 1 0

| M9PR | M8PR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AIMEL 149

32072A-AVR32-03/09 I ©

14.5.5 Master Remap Control Register

Name: MRCR

Access Type: Read/Write

Offset: 0x100

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RCB15 | RCB14 | RCB13 | RCB12 | RCB11 | RCB10 | RCB9 | RCB8 |
7 6 5 4 3 2 1 0

| RCB7 | RCB6 | RCB5 | RCB4 | RCB3 | RCB2 | RCB1 | RCBO |

* RCB: Remap Command Bit for Master x
0: Disable remapped address decoding for the selected Master
1: Enable remapped address decoding for the selected Master

Alm L 150

32072A-AVR32-03/09 I ©

14.5.6

Name:

Access Type:

Offset:

Reset Value:

Special Function Registers

SFRO...SFR15
Read/Write
0x110 - 0x115

31 30 29 28 27 26 25 24
| SFR |
23 22 21 20 19 18 17 16
| SFR |
15 14 13 12 11 10 9 8
| SFR |
7 6 5 4 3 2 1 0

SFR |

* SFR: Special Function Register Fields

Those registers are not a HMATRIX specific register. The field of those will be defined where they are used.

32072A-AVR32-03/09

ATMEL

Y 5

151

14.6 Bus Matrix Connections

32072A-AVR32-03/09

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, HMATRIX MCFGO
register is associated with the CPU Data master interface.

Table 14-2. High Speed Bus masters

Master O CPU Data
Master 1 CPU Instruction
Master 2 CPU SAB
Master 3 PDCA

Master 4 DMACA Master 1
Master 5 DMACA Master 2
Master 6 USBB DMA

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave humber
in the table below can be used to index the HMATRIX control registers. For example, HMATRIX
SCFG4 register is associated with the Embedded CPU SRAM Slave Interface.

Table 14-3. High Speed Bus slaves

Slave 0 Internal Flash

Slave 1 HSB-PB Bridge A

Slave 2 HSB-PB Bridge B

Slave 3 AES

Slave 4 Embedded CPU SRAM
Slave 5 USBB DPRAM

Slave 6 EBI

Slave 7 DMACA Slave

Slave 8 Embedded System SRAM 0
Slave 9 Embedded System SRAM 1

AIMEL 152

Y 5

T
NVYHS waisAs
pappaqw3

)

m/,

0
NYHS waishs
pappaqui3

ane|s
VYOVINd

aoeIa1U|
sng |eusa1xg

AVdda dasn

HMATRIX SLAVES

ANVHS NdO
psppaqu3

S3av

g abpug
ad-aSH

v abpug
g9d-9SH

yseld reussiuj

Figure 14-1. HMATRIX Master / Slave Connections

N

o [V} ™ < [Te)
[} 1= oM o —
&z 1S <© <
8 | 25 | & S | 98 | 98 | B2

o > a 7] 7] SM
2 (R 2 g g g 30
O j= o = =

SHYILSVIN XIdLVYINH

153

ATMEL

32072A-AVR32-03/09

15. External Bus Interface (EBI)

15.1 Features

15.2 Overview

32072A-AVR32-03/09

Rev.: 1.7.0.0

e Optimized for application memory space support
* Integrates three external memory controllers:
— Static Memory Controller (SMC)
— SDRAM Controller (SDRAMC)
— Error Corrected Code (ECCHRS) controller
 Additional logic for NAND Flash/SmartMedia™ and CompactFlash™ support
— NAND Flash support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _I0IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
* Optimized external bus:16-bit data bus
— Up to 24-bit Address Bus, Up to 8-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on external memories
* Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on Chip Select 0
— SDRAM Controller or Static Memory Controller on Chip Select 1
— Static Memory Controller on Chip Select 2, Optional NAND Flash support
— Static Memory Controller on Chip Select 3, Optional NAND Flash support
— Static Memory Controller on Chip Select 4, Optional CompactFlash™ support
— Static Memory Controller on Chip Select 5, Optional CompactFlash™ support

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded memory controller of an AVR32 device. The Static
Memory, SDRAM and ECCHRS Controllers are all featured external memory controllers on the
EBI. These external memory controllers are capable of handling several types of external mem-
ory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to six external devices, each assigned to six address spaces
defined by the embedded memory controller. Data transfers are performed through a 16-bit, an
address bus of up to 23 bits, up to six chip select lines (NCS[5:0]), and several control pins that
are generally multiplexed between the different external memory controllers.

AIMEL 154

Y 5

15.3 Block Diagram

Figure 15-1. EBI Block Diagram

INTC
SDRAMC_irq # A Rs4ig
HMATRIX A N EBI
< > <t e[] DATA[15:0]
™ Controller [i—t———-
| e] NWE1
- >] NWEO
Static - la»] NRD
< } Memory ‘ .
Controller «h e[] NCS[5:0]
" L
- e[] ADDR[23:0]
Bl |- e[| SDCS
A
- a»[| CAS
ECCHRS
< - Controller vwox [T 1o [T RAS
Logic Controller
¢ g > | SDA10
NAND Flash — a1 SDWE
> SmartMedia [«
SFR Logic B ~<»[] SDCK
registers
_i Compact il g <=1 SDCKE
FLash <
> Logic - >] NANDOE
g e[] NANDWE
Address > Chip Select
Decoders Assignor - e] CFRNW
Y > «»[] CFCE1
et e[] CFCE2
HSB-PB [P
Bridge <!> e[] NWAIT

Y Peripheral Bus

Alm L 155

32072A-AVR32-03/09 I ©

15.4 1/O Lines Description

Table 15-1. EBI I/O Lines Description

Alternate Active
Pin Name Name Pin Description Type Level

EBI common lines

DATA[15:0] Data Bus ‘ 110 ‘
SMC dedicated lines

ADDRI1] SMC Address Bus Line 1 Output

ADDRJ[12] SMC Address Bus Line 12 Output

ADDRJ[15] SMC Address Bus Line 15 Output

ADDRJ[23:18] SMC Address Bus Line [23:18] Output
NCS[0] SMC Chip Select Line 0 Output Low
NWAIT SMC External Wait Signal Input Low

SDRAMC dedicated lines

SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDCS1 SDRAM Controller Chip Select Line 1 Output Low
SDWE SDRAM Write Enable Output Low
SDA10 SDRAM Address Bus Line 10 Output Low
RAS - CAS Row and Column Signal Output Low

CompactFlash dedicated lines

CFCEL1 - .
CECE2 CompactFlash Chip Enable Output Low
CFRNW CompactFlash Read Not Write Signal Output
NAND Flash/SmartMedia dedicated lines
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
SMC/SDRAMC shared lines
NCS[1] SMC Chip Select Line 1
NCS[1] . . Output Low
SDCSO0 SDRAMC Chip Select Line 0
DQMO SDRAMC DQM1
ADDRIO0] . Output
ADDRI[0]-NBSO | SMC Address Bus Line 0 or Byte Select 1
ADDRJ[9:0] SDRAMC Address Bus Lines [9:0]
ADDRJ[11:2] . Output
ADDRJ[11:2] SMC Address Bus Lines [11:2]
ADDRJ[9:0] SDRAMC Address Bus Lines [12:11]
ADDRJ[14:13] . Output
ADDRJ[14:13] SMC Address Bus Lines [14:13]
BAO SDRAMC Bank 0
ADDRJ[16] . Output
ADDRJ[16] SMC Address Bus Line 16

AIMEL 156

32072A-AVR32-03/09 I ©

Alternate Active
Pin Name Name Pin Description Type Level
BA1l SDRAMC Bank 1
ADDRJ[17] . Output
ADDRJ[17] SMCAddress Bus Line 17
SMC/CompactFlash shared lines
NRD SMC Read Signal
NRD Output Low
CFNOE CompactFlash CFNOE
NWEO-NWE SMC Write Enable10 or Write enable
NWEO Output Low
CFNWE CompactFlash CFNWE
NCS[4 SMC Chip Select Line 4
NCS[4] [4] P . _ Output | Low
CFCS[0] CompactFlash Chip Select Line 0
NCS[5 SMC Chip Select Line 5
NCSI5] [5] P . _ output | Low
CFCS[1] CompactFlash Chip Select Line 1
SMC/NAND Flash/SmartMedia shared lines
NCS[2] SMC Chip Select Line 2
NCS[2 i i i Output Low
[2] NANDCSI0] glANDFIash/SmartMedla Chip Select Line p
NCS[3] SMC Chip Select Line 3
NCS[3 i i i Output Low
[3] NANDCS[1] IIIANDFIash/SmartMedla Chip Select Line p
SDRAMC/SMC/CompactFlash shared lines
DQM1/ SDRAMC DQM1
NWE1 NWE1-NBS1/ | SMC Write Enablel or Byte Select 1 Output
CFNIORD CompactFlash CFNIORD

15.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described

below.

155.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with I/O Con-
troller lines. The user must first configure the 1/O Controller to assign the EBI pins to their
peripheral functions.

15.5.2 Power Management
To prevent bus errors EBI operation must be terminated before entering sleep mode.

155.3 Clocks

A number of clocks can be selected as source for the EBI. The selected clock must be enabled
by the Power Manager.
The following clock sources are available:

« CLK_EBI

* CLK_SDRAMC

« CLK_SMC

AIMEL 157

32072A-AVR32-03/09 I ©

* CLK_ECCHRS

Refer to Table 15-2 on page 158 to configure those clocks.

Table 15-2. EBI Clocks Configuration
Type of the Interfaced Device
Clocks name Clocks SRAM, PROM, NandFlash
type SDRAM EPROM, _ CompactFlash
EEPROM, Flash | SmartMedia
CLK_EBI HSB X X X
CLK_SDRAMC PB
CLK_SMC PB X X X
CLK_ECCHRS PB

1554 Interrupts
The EBI interface has two interrupt lines connected to the Interrupt Controller:
« SDRAMC_IRQ: Interrupt signal coming from the SDRAMC
* RS4_IRQ: Interrupt signal coming from the ECCHRS
Handling the EBI interrupt requires configuring the interrupt controller before configuring the EBI.
1555 HMATRIX

The EBI interface is connected to the HMATRIX Special Function Register 6 (SFR6). The user
must first write to this HMATRIX.SFR6 to configure the EBI correctly.
Table 15-3.

SFR6 Bit
Number

EBI Special Function Register Fields Description

Bit name Description

[31:6] Reserved

0 = Chip Select 5 (NCS[5]) is connected to a Static Memory device. For each
access to the NCS[5] memory space, all related pins act as SMC pins

1 = Chip Select 5 (NCS[5]) is connected to a CompactFlash device. For each
access to the NCS[5] memory space, all related pins act as CompactFlash
pins

5 CS5A

0 = Chip Select 4 (NCS[4]) is connected to a Static Memory device. For each
access to the NCS[4] memory space, all related pins act as SMC pins

1 = Chip Select 4 (NCS[4]) is connected to a CompactFlash device. For each
access to the NCS[4] memory space, all related pins act as CompactFlash
pins

4 CS4A

0 = Chip Select 3 (NCS[3]) is connected to a Static Memory device. For each
access to the NCS[3] memory space, all related pins act as SMC pins

1 = Chip Select 3 (NCSJ3)) is connected to a NandFlash or a SmartMedia
device. For each access to the NCS[3] memory space, all related pins act as
NandFlash or SmartMedia pins

3 CS3A

AIMEL 158

32072A-AVR32-03/09 I ©

Table 15-3. EBI Special Function Register Fields Description
SFR6 Bit
Number Bit name Description
0 = Chip Select 2 (NCS[2]) is connected to a Static Memory device. For each
access to the NCS[2] memory space, all related pins act as SMC pins
2 CS2A 1 = Chip Select 2 (NCS[2]) is connected to a NandFlash or a SmartMedia
device. For each access to the NCS[2] memory space, all related pins act as
NandFlash or SmartMedia pins
0 = Chip Select 1 (NCS[1]) is connected to a Static Memory device. For each
1 CSIA access to the NCS[1] memory space, all related pins act as SMC pins
1 = Chip Select 1 (NCS[1]) is connected to a SDRAM device. For each access
to the NCS[1] memory space, all related pins act as SDRAM pins
0 Reserved

15.6 Functional Description

The EBI transfers data between the internal HSB bus (handled by the HMATRIX) and the exter-
nal memories or peripheral devices. It controls the waveforms and the parameters of the
external address, data and control busses and is composed of the following elements:

* The Static Memory Controller (SMC)

* The SDRAM Controller (SDRAMC)

* The ECCHRS Controller (ECCHRS)

« A chip select assignment feature that assigns an HSB address space to the external devices

< A multiplex controller circuit that shares the pins between the different memory controllers

» Programmable CompactFlash support logic

* Programmable SmartMedia and NAND Flash support logic

15.6.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 16-bit data lines, the address
lines of up to 24 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAMC without delaying the
other external memory controller accesses.

15.6.2 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

15.6.3 SDRAM Controller

Writing a one to the HMATRIX.SFR6.CS1A bit enables the SDRAM logic.

For information on the SDRAM Controller, refer to the SDRAM Section.

15.6.4 ECCHRS Controller

For information on the ECCHRS Controller, refer to the ECCHRS Section.

32072A-AVR32-03/09

AIMEL 159

Y 5

15.6.5 CompactFlash Support

The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the SMC on the NCS[4] and/or NCS[5] address space.
Writing to the HMATRIX.SFR6.CS4A and/or HMATRIX.SFR6.CS5A bits the appropriate value
enables this logic. Access to an external CompactFlash device is then made by accessing the
address space reserved to NCS[4] and/or NCSJ[5].

All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are sup-
ported but the signals _IOWR, _101S16 (/O and True IDE modes) and _ATA SEL (True IDE
mode) are not handled.

15.6.5.1 I/0 Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode

32072A-AVR32-03/09

Within the NCS[4] and/or NCS[5] address space, the current transfer address is used to distin-
guish I/O mode, common memory mode, attribute memory mode and True IDE mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
15-2 on page 160. ADDR[23:21] bits of the transfer address are used to select the desired mode
as described in Table 15-4 on page 160.

Figure 15-2. CompactFlash Memory Mapping

True IDE Alternate Mode Space
Offset 0xO0EO 0000

True IDE Mode Space
Offset 0x00CO 0000

CF Address Space I/O Mode Space

Offset 0x0080 0000

Common Memory Mode Space
Offset 0x0040 0000

Attribute Memory Mode Space

Note: The ADDRJ[22] I/O line is used to drive the REG signal of the CompactFlash Device (except in
True IDE mode).

Table 15-4. CompactFlash Mode Selection

ADDR[23:21] Mode Base Address

000 Attribute Memory

010 Common Memory

100 I/O Mode

110 True IDE Mode

111 Alternate True IDE Mode
Alm L 160
Y 5

15.6.5.2 CFCEL1 and CFCE2 signals

32072A-AVR32-03/09

To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the DATA[7:0] bus is only possible when the SMC is config-
ured to drive 8-bit memory devices on the corresponding NCS pin (NCS[4] or NCS[5]). The Data
Bus Width (DBW) field in the SMC Mode (MODE) register of the NCS[4] and/or NCS[5] address
space must be written as shown in Table 15-5 on page 161 to enable the required access type.

NBS1 and NBSO are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the SMC Section.

Table 15-5. CFCE1 and CFCE2 Truth Table

SMC Access
Mode CFCE2 | CFCE1 DBW Comment Mode

Access to Even Byte on

Attribute Memory NBS1 NBSO 16 bits DATA[7:0]

Byte Select

Access to Even Byte on

DATA[7:0
NBS1 NBSO 16bits [7:0] Byte Select
Access to Odd Byte on

Common Memory DATA[15:8]

Access to Odd Byte on

1 0 8bits | parar7:0]

Access to Even Byte on

. DATA[7:0]
NBS1 NBSO 16 bits Byte Select
Access to Odd Byte on

/O Mode DATA[15:8]

Access to Odd Byte on

L 0 8bits | parar7:0]

True IDE Mode

Access to Even Byte on
DATA[7:0]
Access to Odd Byte on
DATA[7:0]

Task File 1 0 8 bits

Access to Even Byte on

; . DATA[7:0]
Data Register 1 0 16 bits Byte Select
Access to Odd Byte on

DATA[15:8]

Alternate True IDE Mode

Control Register

Alternate Status 0 1
Read

Don’t | Access to Even Byte on

Care DATA[7:0] Don't Care

Access to Odd Byte on

Drive Address 0 1 8 bits DATA[7:0]

Standby Mode or
Address Space is
not assigned to
CF

AIMEL 161

Y 5

15.6.5.3 Read/Write signals

In 1/O mode and True IDE mode, the CompactFlash logic drives the read command signals of
the SMC on CFNIORD signal, while the CFNOE and CFNWE signals are deactivated. Likewise,
in common memory mode and attribute memory mode, the SMC signals are driven on the
CFNOE and CFNWE signals, while the CFNIORD is deactivated. Figure 15-3 on page 162 dem-
onstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by writing the
address setup and hold time on the NCS[4] (and/or NCSJ[5]) chip select to the appropriate val-
ues. For details on these signal waveforms, please refer to the section: Setup and Hold Cycles
of the SMC Section.

Figure 15-3. CompactFlash Read/Write Control Signals

EBI

SMC Compact Flash Logic

A23

11— -
1—p
0 —»»

> CFNOE
>
1 —>,r -
A22 —»
>
1 —p»

CENWE

Yy

NRD
NWRO/NWE

CENIORD

\

0
1

/

N
1

Table 15-6. CompactFlash Mode Selection

Mode Base Address

CFNOE

CFNWE

CFNIORD

Attribute Memory
Common Memory

NRD_NOE

NWRO_NWE

1

1/0 Mode

1

1

NRD_NOE

True IDE Mode

0

1

NRD_NOE

15.6.5.4 Multiplexing of CompactFlash signals on EBI pins
Table 15-7 on page 163 and Table on page 163 illustrate the multiplexing of the CompactFlash
logic signals with other EBI signals on the EBI pins. The EBI pins in Table 15-7 on page 163 are
strictly dedicated to the CompactFlash interface as soon as the HMATRIX.SFR6.CS4A and/or
HMATRIX.SFR6.CS5A bits is/are written. These pins must not be used to drive any other mem-

ory devices.

The EBI pins in Table 15-8 on page 163 remain shared between all memory areas when the cor-
responding CompactFlash interface is enabled (CS4A = 1 and/or CS5A = 1).

Alm L 162

32072A-AVR32-03/09 I ©

Table 15-7. Dedicated CompactFlash Interface Multiplexing
_ CompactFlash Signals EBI Signals
Pins CS4A =1 CS5A =1 CS4A =0 CS5A =0
NCS[4] CFCSO0 NCS[4]
NCS[5] CFCS1 NCS[5]
Table 15-8. Shared CompactFlash Interface Multiplexing
Access to
CompactFlash Device
Pins CompactFlash Signals
NRD CFNOE
NWEO CFENWE
NWE1 CFENIORD
CFRNW CFRNW

15.6.5.5 Application example
Figure 15-4 on page 164 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCSO signal is identical to the NCS[4] signal. The CFRNW signal remains valid
throughout the transfer, as does the address bus. The CompactFlash _WAIT signal is con-
nected to the NWAIT input of the Static Memory Controller. For details on these waveforms and
timings, refer to the SMC Section.

32072A-AVR32-03/09

ATMEL

Y 5

163

AT32UC3A3

Figure 15-4. CompactFlash Application Example
CompactFlash

EBI Connector
DATA[15:0] |I > 'I D[15:0]
DIR /OF|
I O
CFRNW
NCS[4] ﬁ
F _cD1
Pxx l { (_cp2
IOE
ADDR[10:0] > A[10:0]
ADDRI[22] > _REG
NRD > _OE
NWEO > _WE
NWE1 > _IORD
> IOWR
ADDR[23] 4)_\! J v -
CFCE1 > _CE1
CFCE2 > _CE2
NWAIT <} _WAIT

15.6.6 SmartMedia and NAND Flash Support
The EBI integrates circuitry that interfaces to SmartMedia and NAND Flash devices.

The NAND Flash logic is driven by the Static Memory Controller on the NCS[2] (and/or NCSJ[3])
address space. Writing to the HMATRIX.SFR6.CS2A (and/or HMATRIX.SFR6.CS3A) bit the
appropriate value enables the NAND Flash logic. Access to an external NAND Flash device is
then made by accessing the address space reserved to NCS[2] (and/or NCS[3]).

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS[2] (and/or NCSJ3]) signal is active. NANDOE and
NANDWE are invalidated as soon as the transfer address fails to lie in the NCSJ[2] (and/or
NCS[3]) address space. See Figure 15-5 on page 165 for more informations. For details on
these waveforms, refer to the SMC Section.

The SmartMedia device is connected the same way as the NAND Flash device.

Alm L 164

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 15-5. NAND Flash Signal Multiplexing on EBI Pins

EBI
SMC NandFlash
Logic
NCS[2)/[3]] | NANDOEL
NRD ,)

NANDWE
—
NWRO_NWE

15.6.6.1 NAND Flash signals

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits ADDR[22] and ADDR[21] of the EBI address bus. The user should note
that any bit on the EBI address bus can also be used for this purpose. The command, address or
data words on the data bus of the NAND Flash device are distinguished by using their address
within the NCSx address space. The chip enable (CE) signal of the device and the ready/busy
(R/B) signals are connected to 1/O Controller lines. The CE signal then remains asserted even
when NCSx is not selected, preventing the device from returning to standby mode.

Figure 15-6. NAND Flash Application Example

DATA[7:0] |-} - AD[7:0]
ADDR[22] P ALE
ADDR[21] p| CLE
NandFlash
EBI
NANDOE P NOE
NANDWE | NWE
NCS[2/3]
Or /0 line - CE
110 line | R/B

Note: The External Bus Interfaces is also able to support 16-bits devices.

Alm L 165

32072A-AVR32-03/09 I ©

15.7 Application Example

1571

32072A-AVR32-03/09

Hardware Interface

Table 15-9. EBI Pins and External Static Devices Connections
Pins of the Interfaced Device
8-bit Static 2 x 8-bit 16-bit Static
: Static)
Pins name Device Devices Device
Controller SMC
DATA[7:0] D[7:0] D[7:0] D[7:0]
DATA[15:0 - D[15:8] D[15:8]
ADDRI0] A[0] - NBS0®
ADDR[1] A[1] A[0] A[0]
ADDR[23:2] A[23:2] A[22:1] A[22:1]
NCS[0] - NCS[5] cs cs cSs
NRD OE OE OE
NWEO WE WE®W WE
NWE1 - WE® NBS1@
Note: 1. NWEL1 enables upper byte writes. NWEO enables lower byte writes.
2. NBS1 enables upper byte writes. NBSO enables lower byte writes.
Table 15-10. EBI Pins and External Devices Connections
Pins of the Interfaced Device
Compact Smart Media
SDRAM ngz:ﬂ Flash or
Pins name True IDE Mode NAND Flash
Controller SDRAMC SMC
DATA[7:0] D[7:0] D[7:0] D[7:0] AD[7:0]
DATA[15:8] D[15:8] D[15:8] D[15:8] AD[15:8]
ADDRI0] DQMO A[0] A[0] -
ADDR[1] - A[1] A[1] -
ADDR[10:2] A[8:0] A[10:2] A[10:2] -
ADDR[11] Al9] - - -
SDA10 A[10] - - -
ADDR[12] - - - -
ADDR[14:13] A[12:11] - - -
ADDR[15] - - - -
ADDR[16] BAO - - -
ADDR[17] BA1 - - -
ADDR[20:18] - - - -

ATMEL

Y 5

166

32072A-AVR32-03/09

Table 15-10. EBI Pins and External Devices Connections (Continued)

Pins of the Interfaced Device

Compact Smart Media

SDRAM szzsm Flash or
Pins name True IDE Mode NAND Flash
Controller SDRAMC SMC
ADDR[21] - - - CLE®
ADDR[22] - REG REG ALE®
NCS[0] - - - _
NCSI[1] SDCSJ[0] - - -
NCS[2] - - - CEO
NCS[3] - - - CE1
NCS[4] - CFcso® CFcso® -
NCSI[5] - CFcs1® CFcs1® -
NANDOE - - - OE
NANDWE - - - WE
NRD - OE - -
NWEO - WE WE -
NWE1 DQM1 IOR IOR -
CFRNW - CFRNW® CFRNW® -
CFCE1 - CE1l CS0 -
CFCE2 - CE2 Cs1 -
SDCS SDCS[1] - - -
SDCK CLK - - -
SDCKE CKE - - _
RAS RAS - - -
CAS CAS - - -
SDWE WE - - -
NWAIT - WAIT WAIT -
Pxx® - CD1 or CD2 CD1 or CD2 -
Pxx®@ - - - RDY

Note: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer

2. Any I/O Controller line.

3. The CLE and ALE signals of the NAND Flash device may be driven by any address bit. For
details, see Section 15.6.6.

ATMEL

Y 5

between the EBI data bus and the CompactFlash slot.

167

15.7.2

32072A-AVR32-03/09

Connection Examples

Figure 15-7 on page 168shows an example of connections between the EBI and external

devices.

Figure 15-7. EBI Connections to Memory Devices

EBI

DATA[15:0]

RAS
cAs
SDCK
SDCKE
SDWE
ADDR[0]
NWEL
NRD
NWEO

SDA10

ADDR[17:1]

SDCS or
NCS[1]

NCS[0]

Y 5

N\
- SDRAM SDRAM
DATAIT.0] | i~ 2Mx8 DATA[15:8] e~ 2Mx8
R CSs .1 |ADDR[11:2] CS .1 LADDR[11:2]
I, SDCK | 3P AAE?lg} SO Pk /X[ng]
— CKE Al11] AL1]
RAS 8o BAL
sl s BAL BAL
DQM
\
N (\
N
TN\
) /)
((/
g SRAM g SRAM
5 128Kx8 < 128Kx8
D[7:0] A[16:0] fADDR{17:1] D[7:0] A[16:0] ADDR[17:1]
NCS[O]| g NCS[O]| g
[____NRD | NRD |
[N\ nweo |- NWEL |, =
N\
ATMEL 168

16. Static Memory Controller (SMC)
Rev. 1.0.6.3

16.1 Features
* 6 chip selects available
* 64-Mbytes address space per chip select
e 8- or 16-bit data bus
* Word, halfword, byte transfers
* Byte write or byte select lines
* Programmable setup, pulse and hold time for read signals per chip select
* Programmable setup, pulse and hold time for write signals per chip select
* Programmable data float time per chip select
e Compliant with LCD module
* External wait request
* Automatic switch to slow clock mode
* Asynchronous read in page mode supported: page size ranges from 4 to 32 bytes

16.2 Overview

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 6 chip selects and a 26-bit address bus. The
16-bit data bus can be configured to interface with 8-16-bit external devices. Separate read and
write control signals allow for direct memory and peripheral interfacing. Read and write signal
waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

AIMEL 169

32072A-AVR32-03/09 I ©

16.3 Block Diagram

Figure 16-1. SMC Block Diagram

SMC
HMatrix Chip Select
»
Power CLK_SMC
Manager

SMC

User Interface

4

NCS[5:0]

NRD

Y

NWRO/NWE

AO0/NBSO

>

NWR1/NBS1

' g

A1/NWR2/NBS2

A[23:2]

Y

D[15:0]

A

NWAIT

A

EBI
Mux Logic

A4

Y

\L A 4

Y

110
Controller

—> | ncsis:0
—»[] nRO
]
]
]

NWEO
ADDRI[0]

NWE1

—>{ | ApoR[1]

4—E| NWAIT

Peripheral Bus :I!

—>»{ | ApDRp23:2]
<—>|:| DATA[15:0]

16.4 1/0O Lines Description
Table 16-1. 1/O Lines Description

Pin Name Pin Description Type Active Level
NCS[5:0] Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write O/Write Enable Signal Output Low
AO/NBSO Address Bit 0/Byte 0 Select Signal Output Low
NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low
A[25:2] Address Bus Output
D[15:0] Data Bus Input/Output
NWAIT External Wait Signal Input Low

16.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described

below.

32072A-AVR32-03/09

ATMEL

Y 5

170

16.5.1

16.5.2

I/O Lines
The SMC signals pass through the External Bus Interface (EBI) module where they are multi-
plexed. The user must first configure the I/O Controller to assign the EBI pins corresponding to
SMC signals to their peripheral function. If the 1/O lines of the EBI corresponding to SMC signals
are not used by the application, they can be used for other purposes by the 1/0 Controller.
Clocks

The clock for the SMC bus interface (CLK_SMC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the

SMC before disabling the clock, to avoid freezing the SMC in an undefined state.

16.6 Functional Description

16.6.1

Application Example

Figure 16-2. SMC Connections to Static Memory Devices

16.6.2

DO0-D15 j

vaAé)(/)’/\‘r\?v?/g 128K x 8 128K x 8
I SRAM
NWRL/NBS1 D0-D7 SRAM D8-D1f
DO-b7 DO-D7
cs cs
AO-AL6 |AZAL8 AO-Ale | AZA18
NRD NRD
NCS0 OE OE
NWRO/NWE
NCS1 WE NWRLNBS | e
NCS3
NCS4

NCS5

Static Memory
Controller

A2-A25

External Memory Mapping

The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address

up to 64Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid

access to the memory device within the page (see Figure 16-3 on page 172).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory.

ATMEL

32072A-AVR32-03/09 I ©

171

Figure 16-3. Memory Connections for Six External Devices

NCS[0] - NCSI5]
NRD
SMC NWE
A[25:0]

D[15:0]

16.6.3

16.6.3.1

16.6.3.2

Connection to External Devices

Data bus width

NCS5 |

NCS4 |

Memory Enable

NCS3

| Memory Enable

[Memory Enable

NCS2

Memory Enable

NCS1 |

NCSO

| Memory Enable

Memory Enable

Output Enable
Write Enable

A[25:0]
8 or 16

D[15:0] or D[7:0] —

A data bus width of 8 or 16 bits can be selected for each chip select. This option is controlled by
the Data Bus Width field in the Mode Register (MODE.DBW) for the corresponding chip select.

Figure 16-4 on page 172 shows how to connect a 512K x 8-bit memory on NCS2. Figure 16-5 on
page 173 shows how to connect a 512K x 16-bit memory on NCS2.

Byte write or byte select access

Each chip select with a 16-bit data bus can operate with one of two different types of write
access: byte write or byte select access. This is controlled by the Byte Access Type bit in the
MODE register (MODE.BAT) for the corresponding chip select.

Figure 16-4.

32072A-AVR32-03/09

Memory Connection for an 8-bit Data Bus

D[7:0]

A[18:2]

D[7:0]

A[18:2]
A0

A0
SMC Al

Al

NWE

Write Enable

NRD
NCS[2]

Output Enable

Memory Enable

ATMEL

Y 5

172

Figure 16-5. Memory Connection for a 16-bit Data Bus

D[15:0] D[15:0]
A[19:2] A[18:1]
A1l A[0]
SMC NBSO Low Byte Enable

NBS1 High Byte Enable
NWE Write Enable
NRD Output Enable

NCS[2] Memory Enable

*Byte write access

The byte write access mode supports one byte write signal per byte of the data bus and a single
read signal.

Note that the SMC does not allow boot in byte write access mode.

« For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byteO
(lower byte) and bytel (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

The byte write access mode is used to connect two 8-bit devices as a 16-bit memory.

The byte write option is illustrated on Figure 16-6 on page 174.

*Byte select access

In this mode, read/write operations can be enabled/disabled at a byte level. One byte select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

« For 16-bit devices: the SMC provides NBS0O and NBS1 selection signals for respectively
byteO (lower byte) and bytel (upper byte) of a 16-bit bus. The byte select access is used to
connect one 16-bit device.

Alm L 173

32072A-AVR32-03/09 I ©

Figure 16-6. Connection of two 8-bit Devices on a 16-bit Bus: Byte Write Option

D[7:0] D[7:0]
D[15:8] |—
A[24:2] A[23:1]
SMC Al Al0]
NWRO Write Enable
NWR1
NRD Read Enable
NCS[3] Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
Memory Enable

Signal multiplexing

Depending on the MODE.BAT bit, only the write signals or the byte select signals are used. To
save I/Os at the external bus interface, control signals at the SMC interface are multiplexed.

For 16-bit devices, bit A0 of address is unused. When byte select option is selected, NWRL1 is
unused. When byte write option is selected, NBSO to NBS1 are unused.

Table 16-3. SMC Multiplexed Signal Translation

Signal Name 16-bit Bus 8-bit Bus
Device Type 1 x 16-bit 2 x 8-bit 1 x 8-bit
(BgX_J'I_)A ceess Type Byte Select Byte Write

NBSO_AO NBSO A0
NWE_NWRO NWE NWRO NWE
NBS1_NWR1 NBS1 NWR1

NBS2_NWR2_A1l Al Al Al

16.6.4 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBSO to
NBS1) always have the same timing as the address bus (A). NWE represents either the NWE

Alm L 174

32072A-AVR32-03/09 I ©

signal in byte select access type or one of the byte write lines (NWRO to NWR1) in byte write
access type. NWRO to NWR1 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS|0..5] chip select lines.

16.6.4.1 Read waveforms
The read cycle is shown on Figure 16-7 on page 175.
The read cycle starts with the address setting on the memory address bus, i.e.:
{A[25:2], A1, AO} for 8-bit devices
{A[25:2], A1} for 16-bit devices

Figure 16-7. Standard Read Cycle

CLK_SMC

A[25:2] :::>%; :
R 4 ‘
|
|
I

NRD | L//
| |

NCS | N |
| | |

D[15:0] i I / | \ |
N 7
| NRDSETUP NRDPULSE | NRDIHOLD
| |
NCSRPSETUP | NCSRDPULSE | NCsROpHoLo
NRDCYCLE

|A Ll
) >

*NRD waveform

The NRD signal is characterized by a setup timing, a pulse width, and a hold timing.

1. NRDSETUP: the NRD setup time is defined as the setup of address before the NRD

falling edge.

2. NRDPULSE: the NRD pulse length is the time between NRD falling edge and NRD ris-
ing edge.

3. NRDHOLD: the NRD hold time is defined as the hold time of address after the NRD ris-
ing edge.

*NCS waveform

Similarly, the NCS signal can be divided into a setup time, pulse length and hold time.

Alm L 175

32072A-AVR32-03/09 I ©

32072A-AVR32-03/09

1. NCSRDSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSRDPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge.

3. NCSRDHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

*Read cycle

The NRDCYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRDCYCLE = NRDSETUP + NRDPULSE + NRDHOLD

Similarly,

NRDCYCLE = NCSRDSETUP + NCSRDPULSE + NCSRDHOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
CLK_SMC cycles. To ensure that the NRD and NCS timings are coherent, the user must define
the total read cycle instead of the hold timing. NRDCYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRDHOLD = NRDCYCLE —NRDSETUP —NRDPULSE

And,

NCSRDHOLD = NRDCYCLE —NCSRDSETUP —NCSRDPULSE

*Null delay setup and hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 16-8 on
page 177).

Alm L 176

Y 5

AT32UC3A3

Figure 16-8. No Setup, No Hold on NRD, and NCS Read Signals

|
X
|
X

CLK_SMC

X

A[25:2] :::$<;
NBSO, NBS1, j<
A0, Al

|

|

|

|

|

NRD

NCS

1

D[15:0] —|—< § é
| NRDSETUP NRDPULSE NRDPULSE
e
| NCSRDPULSE | NCSRDPULSE | NCSRDPULSE |

o

| NRDCYCLE | NRDCYCLE | NRDCYCLE |

-l -
I ! i i

1><
)I?<
:
|
|
I
|
|

0"

*Null Pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

16.6.4.2 Read mode
As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The Read Mode bit in the MODE register
(MODE.READMODE) of the corresponding chip select indicates which signal of NRD and NCS
controls the read operation.

*Read is controlled by NRD (MODE.READMODE = 1)

Figure 16-9 on page 178 shows the waveforms of a read operation of a typical asynchronous
RAM. The read data is available t5cc after the falling edge of NRD, and turns to ‘Z’ after the ris-
ing edge of NRD. In this case, the MODE.READMODE bit must be written to one (read is
controlled by NRD), to indicate that data is available with the rising edge of NRD. The SMC sam-
ples the read data internally on the rising edge of CLK_SMC that generates the rising edge of
NRD, whatever the programmed waveform of NCS may be.

Alm L 177

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-9. READMODE = 1: Data Is Sampled by SMC Before the Rising Edge of NRD

CLK_SMC ‘ | |
|
|
|

A[25:2]

NBSO, NBSL, ><'
AO, Al |

|
|
NRD :
| [
| |
NCS | | | |
| : . |
| | | |
| | tpACC A | |
. | | | |
D[15:0
[15:0] [[N I I
| [| |
1 | ' 1

Data Sampling

*Read is controlled by NCS (MODE.READMODE = 0)

Figure 16-10 on page 179 shows the typical read cycle of an LCD module. The read data is valid
tpacc after the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data
must be sampled when NCS is raised. In that case, the MODE.READMODE bit must be written
to zero (read is controlled by NCS): the SMC internally samples the data on the rising edge of
CML_SMC that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.

Alm L 178

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-10. READMODE = 0: Data Is Sampled by SMC Before the Rising Edge of NCS

CLK_SMC ‘ | | | | |
|
|

|
A[25:2] X
|
|
NBSO, NBSL1, ><'
A0, Al
NRD : \

NCS

X
X

tracc > 4

[
!
i
|
|
i
|
[
|
!
I
!
!
[
\
D[15:0] {)

Data Sampling

16.6.4.3 Write waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 16-11 on page 180. The
write cycle starts with the address setting on the memory address bus.

*NWE waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWESETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge.

2. NWEPULSE: the NWE pulse length is the time between NWE falling edge and NWE
rising edge.

3. NWEHOLD: the NWE hold time is defined as the hold time of address and data after
the NWE rising edge.

The NWE waveforms apply to all byte-write lines in byte write access mode: NWRO to NWR3.

16.6.4.4 NCS waveforms

The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined.

1. NCSWRSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSWRPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge;

3. NCSWRHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

Alm L 179

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-11. Write Cycle

CLK_SMC ‘ | | |
| | | [| | |
[| | | [[|
I : : : : : :

Al25:2] | | [| [|><
|] | [|]]
| | [| | | |

NBSO, NBS1, ><' i i i i i ; ><
AO, AL [I I I | I I
| | | [| | |
| | | | | | |
NWE | I [I / I I
| | | 1 | |
[| [| | |
| | [| | |
NCS | | | | | |
	: : :			
: NWESE:TUP : NWEPULSE : NWEI:—	OLD :			
P PE————»				
[[

NC4WRSETUFJ| | NCSWRPULSE | | NCSWRHQLD

<«——>

|
| NWECYCLE | I

& Nl
»

*Write cycle

The write cycle time is defined as the total duration of the write cycle, that is, from the time where
address is set on the address bus to the point where address may change. The total write cycle
time is equal to:

NWECYCLE = NWESETUP + NWEPULSE + NWEHOLD

Similarly,

NWECYCLE = NCSWRSETUP + NCSWRPULSE + NCSWRHOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of CLK_SMC cycles. To ensure that the NWE and NCS timings are coherent, the user must
define the total write cycle instead of the hold timing. This implicitly defines the NWE hold time
and NCS (write) hold times as:

NWEHOLD = NWECYCLE —NWESETUP —NWEPULSE

And,

NCSWRHOLD = NWECYCLE —NCSWRSETUP —NCSWRPULSE

Alm L 180

32072A-AVR32-03/09 I ©

*Null delay setup and hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 16-12 on page
181). However, for devices that perform write operations on the rising edge of NWE or NCS,
such as SRAM, either a setup or a hold must be programmed.

Figure 16-12. Null Setup and Hold Values of NCS and NWE in Write Cycle

CLK_SMC

A[25:2]

X X

|

|

NBSO, NBSL, j<
AO,AL ——

|

NWE, 4'\
NWEO, NWE1

<

VYRR

R e

%

D

I
I

NCS :
[I
[I

D[15:0] I

| X X L)
: NWESETUP NWEPULSE | NWEPULSE 'I
€ > < g I
I I I I
| NCSWRSETUP | NCSWRPULSE | NCSWRPULSE |
€ p————————— Pl
[I I I
I I I I
| NWECYCLE I NWECYCLE | NWECYCLE
I
1

*Null pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

16.6.4.5 Write mode
The Write Mode bit in the MODE register (MODE.WRITEMODE) of the corresponding chip
select indicates which signal controls the write operation.

*Write is controlled by NWE (MODE.WRITEMODE = 1)

Figure 16-13 on page 182 shows the waveforms of a write operation with MODE.WRITEMODE
equal to one. The data is put on the bus during the pulse and hold steps of the NWE signal. The
internal data buffers are turned out after the NWESETUP time, and until the end of the write
cycle, regardless of the programmed waveform on NCS.

Alm L 181

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-13. WRITEMODE = 1. The Write Operation Is Controlled by NWE

CLK_SMC \ | |
|
|
|

A[25:2]

NBSO, NBS1,
A0, Al

NWE,
NWRO, NWR1

NCS

s et ot S B B
T }

D[15:0]

*Write is controlled by NCS (MODE.WRITEMODE = 0)

Figure 16-14 on page 182 shows the waveforms of a write operation with MODE.WRITEMODE
written to zero. The data is put on the bus during the pulse and hold steps of the NCS signal.
The internal data buffers are turned out after the NCSWRSETUP time, and until the end of the
write cycle, regardless of the programmed waveform on NWE.

Figure 16-14. WRITEMODE = 0. The Write Operation Is Controlled by NCS

A[25:2]

CLK_SMC \ | | |
|
|
|
|

NBSO, NBS1,
A0, Al

NWE,
NWRO, NWR1

NCS

e N At SRR S

D[15:0]

T

Alm L 182

32072A-AVR32-03/09 I ©

16.6.4.6 Coding timing parameters

All timing parameters are defined for one chip select and are grouped together in one register
according to their type.

The Setup register (SETUP) groups the definition of all setup parameters:

* NRDSETUP, NCSRDSETUP, NWESETUP, and NCSWRSETUP.
The Pulse register (PULSE) groups the definition of all pulse parameters:
* NRDPULSE, NCSRDPULSE, NWEPULSE, and NCSWRPULSE.
The Cycle register (CYCLE) groups the definition of all cycle parameters:

* NRDCYCLE, NWECYCLE.
Table 16-4 on page 183 shows how the timing parameters are coded and their permitted range.

Table 16-4. Coding and Range of Timing Parameters

Permitted Range

Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 0 <value <31 128 < value < 128+31
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 <value <63 256 < value < 256+63

256 < value < 256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 <value <127 512 < value <512+127
768 < value < 768+127

16.6.4.7 Usage restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true if the MODE.WRITE-
MODE bit is written to one. See Section 16.6.5.2.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

16.6.5 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

Alm L 183

32072A-AVR32-03/09 I ©

16.6.5.1 Chip select wait states
The SMC always inserts an idle cycle between two transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the deactivation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBSO to NBS3, NWRO to
NWR3, NCS[0..5], NRD lines are all set to high level.

Figure 16-15 on page 184 illustrates a chip select wait state between access on Chip Select 0
(NCSO0) and Chip Select 2 (NCS2).

Figure 16-15. Chip Select Wait State Between a Read Access on NCSO0 and a Write Access on
NCS2

0
-
|7<
9]
<
@]

S

I
I
xpsz]:::>{‘ : :><:
I |
I [
|]
P G X
I

T R TR

| |
| |
NWE ! ! |
| | | _____(//_
| | |
NCS0 ' ' : : :
| 1\ | | |
NCS | | | | |
| | I | |
| | | | e
| NRDCYCLE NWECYCLE '
€ N T
I‘ »

>

—ple—>

.
Read to Write) Chip Select
Wait State Wait State

16.6.5.2 Early read wait state
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

« if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 16-16 on page 185).

‘Illll L 184

32072A-AVR32-03/09 I ©

¢ in NCS write controlled mode (MODE.WRITEMODE = 0), if there is no hold timing on the
NCS signal and the NCSRDSETUP parameter is set to zero, regardless of the read mode
(Figure 16-17 on page 186). The write operation must end with a NCS rising edge. Without
an early read wait state, the write operation could not complete properly.

 in NWE controlled mode (MODE.WRITEMODE = 1) and if there is no hold timing
(NWEHOLD = 0), the feedback of the write control signal is used to control address, data,
chip select, and byte select lines. If the external write control signal is not inactivated as
expected due to load capacitances, an early read wait state is inserted and address, data
and control signals are maintained one more cycle. See Figure 16-18 on page 187.

Figure 16-16. Early Read Wait State: Write with No Hold Followed by Read with No Setup.

|
- |
CLK_SMC | | |] |
| [| | | :
I [| | | |
! - i | .
A[25:2] | |>< >< ! :>
I | | | |
| [| | | :
| } | | 1
NBSO, NBS, - T
A0, AL >|< : :><)|>< ! D
I [| | | :
| |] |
NWE | | | , !
| | | I |
! I I I I |
NRD ' | | |
| | \ | :\“ I :
| No hold | | |
: l : No setup I
|
w0 (D —
| | :
! | | |
! | | |
! [|
| Write cycle | Early Read)| Read cycle |

" Wait state * I

A|III L 185

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-17. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read
with No Setup.

No hold

|
D[15:0] <:::::j> (>
[
[

I Write cycle | Early Read! Read cycle |
I (WRITEMODE=0) | wait State | (READMODE=0 or READMODE=1),

CLK_SMC \ | | | | | | | :
| | | | | :
: ! ! ! ! |
e X IXCK —
| | | ,
| I | | | |
NBSO, NBS1, ! ’ ! l :
A0, Al j::>T< : :>x< }“(: i>>
|
| ' | |
NWE I I | I |
| | | | |
| | | | | |
NRD i T N\ \ : |
|
|
|
|
|
|

‘IIII] L 186

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-18. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read
with one Set-up Cycle.

CLK_SMC I | |
[
|
|

A[25:2]

|
NBSO, NBS1, ><'
A0, Al |

Internal write controlling signal

external write controlling
signal(NWE)

H B V4

|
|
i
I
|
l
|
|
|
|
i
|
b:

Read setup=1

NRD

D[15:0] 'I < : |> 'I < >
| |

Write cycle | Early Read| Read cycle |
(WRITEMODE = 1) - Wait State+ (READMODE=0 or READMODE=1)

[
[
|
No hold :
[l
[
[

16.6.5.3 Reload user configuration wait state
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “reload user configuration wait
state” is used by the SMC to load the new set of parameters to apply to next accesses.

The reload configuration wait state is not applied in addition to the chip select wait state. If
accesses bhefore and after reprogramming the user interface are made to different devices (dif-
ferent chip selects), then one single chip select wait state is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a reload configuration wait state is inserted, even if the change does not concern the cur-
rent chip select.

*User procedure

To insert a reload configuration wait state, the SMC detects a write access to any MODE register
of the user interface. If the user only modifies timing registers (SETUP, PULSE, CYCLE regis-
ters) in the user interface, he must validate the modification by writing the MODE register, even
if no change was made on the mode parameters.

AIMEL 187

32072A-AVR32-03/09 I ©

16.6.5.4

16.6.6

16.6.6.1

*Slow clock mode transition

A reload configuration wait state is also inserted when the slow clock mode is entered or exited,
after the end of the current transfer (see Section 16.6.8).

Read to write wait state

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 16-15 on page 184.

Data Float Wait States

Read mode

32072A-AVR32-03/09

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

« before starting a read access to a different external memory.
« before starting a write access to the same device or to a different external one.

The Data Float Output Time (tpg) for each external memory device is programmed in the Data
Float Time field of the MODE register (MODE.TDFCYCLES) for the corresponding chip select.
The value of MODE.TDFCYCLES indicates the number of data float wait cycles (between 0 and
15) before the external device releases the bus, and represents the time allowed for the data
output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tye will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the MODE.READMODE bit and the TDF
Optimization bit of the MODE register (MODE.TDFMODE) for the corresponding chip select.

Writing a one to the MODE.READMODE bit indicates to the SMC that the NRD signal is respon-
sible for turning off the tri-state buffers of the external memory device. The data float period then
begins after the rising edge of the NRD signal and lasts MODE.TDFCYCLES cycles of the
CLK_SMC clock.

When the read operation is controlled by the NCS sighal (MODE.READMODE = 0), the
MODE.TDFCYCLES field gives the number of CLK_SMC cycles during which the data bus
remains busy after the rising edge of NCS.

Figure 16-19 on page 189 illustrates the data float period in NRD-controlled mode
(MODE.READMODE =1), assuming a data float period of two cycles (MODE.TDFCYCLES = 2).
Figure 16-20 on page 189 shows the read operation when controlled by NCS (MODE.READ-
MODE = 0) and the MODE.TDFCYCLES field equals to three.

Alm L 188

Y 5

:2)

Figure 16-19. TDF Period in NRD Controlled Read Access (TDFCYCLES

CLK_SMC

X

2 tlock cycles

TDF

3 a 8 S
m 14 > o)
z < z =
- - [a)]
o O

n <

m

2

NRD controlled read operation

=3)

Figure 16-20. TDF Period in NCS Controlled Read Operation (TDFCYCLES

o)
®
=
IIIIIIIIIIIIIIIIIIIIII -TTK
[A e e R Y A “T A"
o
©
S
— (&]
X
(8]
/V S
—— e —f — e —— — — —— PRp—— Illdll
o
-
— | LL o
i
d Lo —_-d__¥» 2
3
©
®
| o
©
@
©
IIIIIIIIIIIIIIIIII N.VA\ —-———-5
c
S
o o
2 3
WS = .®
2 ||%Kﬂ||||| e ___¥. n7

CLK_SMC
NRD
NCS

NBSO, NBS1
A0, Al

32072A-AVR32-03/09

16.6.6.2

TDF optimization enabled (MODE.TDFMODE = 1)

When the MODE.TDFMODE bit is written to one (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to
insert.

Figure 16-21 on page 190 shows a read access controlled by NRD, followed by a write access
controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRDHOLD = 4; READMODE = 1 (NRD controlled)
NWESETUP = 3; WRITEMODE = 1 (NWE controlled)
TDFCYCLES = 6; TDFMODE = 1 (optimization enabled).

Figure 16-21. TDF Optimization: No TDF Wait States Are Inserted if the TDF Period Is over when the Next Access Begins

CLK_SMC
|

|
A[25:2] 3'(

| |

| |

NRD | [| [

| | | |

| | | | | |

| | | | | |

| | | | ! | ! | |

NWE | | | | | | | | w
							l«———1—pl				
							o —				
							N\ MpEseTge=3				
I }			} }	} }]							
NCSO o N L A N											
		1 1							T	1	
I : [: : : TDFCYI’CLES ilf 6 : : : I I I I											
) ' — .	. ! fl		y ! ! !						
o0 b
I R Lo | | | R
Read access on NCS0 (NRD controlled) Read to Write Write access on NCSO0 (NWE controlled)
Wait State
16.6.6.3 TDF optimization disabled (MODE.TDFMODE = 0)

32072A-AVR32-03/09

When optimization is disabled, data float wait states are inserted at the end of the read transfer,
so that the data float period is ended when the second access begins. If the hold period of the
readl controlling signal overlaps the data float period, no additional data float wait states will be
inserted.

Figure 16-22 on page 191, Figure 16-23 on page 191 and Figure 16-24 on page 192 illustrate
the cases:

« read access followed by a read access on another chip select.
« read access followed by a write access on another chip select.

Alm L 190

Y 5

« read access followed by a write access on the same chip select.
with no TDF optimization.

Figure 16-22. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Two Read Accesses on Dif-
ferent Chip Selects.

aoe | L L L[L[L L L LIy

X

A[25:2]

X
X

NBSO, NBS1,
A0, Al

Read1 controlling

|
]
Read2 sqletup =1

b
X

I
|
I
signal(NRD) | ReadlHhold=1
< e
Read?2 controlling : 1] 1]]
signal(NRD) : L : T:DFCYCLES =6 R : :
I L I I i I I
OISOl ——————— U D) IWMDIIIXIIIIIDDD2 22NN D) : ¢
i i i 5 TDF WAIT STATES i i
a Read1 cycle ': :‘ D Read 2 cycle
TDFCYCLES = 6 D a— TDFMODE=0

(optimization disabled)
Chip Select Wait State

Figure 16-23. TDF Optimization Disabled (MODE.TDFMODE= 0). TDF Wait States between a Read and a Write Access
on Different Chip Selects.

CLK_SMC I | | | |

A[25:2] ><'
NBSO, NBS1, !
A0, Al X

Read1l controlling
signal(NRD)

I I
! !
i |
T [
| |
| |
| I
| l
| |
t 9

Readl hgld = 1 Write2 setub =1
——>

Write2 controlling

| 1 1
signal(NWE) ! TDECYCLES =} [|
< > | |
| | | | |
| | | | | |
D[15:0 f ! { 1 I 1/
sl U DIIMNIIIIRIIIINIIIY . «
< > | < »ie
Readl cycle : : : 2 TDF WAIT STATES Write 2 cycle
TDFCYCLES =4 _TE_)FN_IODE:O
Read to Write Chip Select (optimization disabled)

Wait State Wait State

AIMEL 191

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 16-24. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Read and Write accesses on
the Same Chip Select.

CLK_SMC I |
I
I
}

X

X

|

|

NBSO, NBS1, |
A0, Al ><

X

Read1 controlling
signal(NRD)

Write2 setup i

<
|

|
| |
| |
| |
| Readl hojd =1 | | 1
| > | <>
Write2 controlling | I | | 1 [
signal(NWE) I I ! TIDFCYCLES -5 I I
	: 1 »				
D[15:0] N 1 L				
asor < 2224022022000 P .					
I R [| | [[|
<€ ») | | 4 TDF WAIT STATESI |
I Read1 cycle I < P
TDFCYCLES =5 < > ! Write 2 cycle
Read to Write TDFMODE=0
Wait State (optimization disabled)

16.6.7 External Wait

16.6.7.1 Restriction

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The External Wait Mode field of the MODE register (MODE.EXNWMODE) on the corresponding
chip select must be written to either two (frozen mode) or three (ready mode). When the
MODE.EXNWMODE field is written to zero (disabled), the NWAIT signal is simply ignored on
the corresponding chip select. The NWAIT signal delays the read or write operation in regards to
the read or write controlling signal, depending on the read and write modes of the corresponding
chip select.

When one of the MODE.EXNWMODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in
Page Mode (Section 16.6.9), or in Slow Clock Mode (Section 16.6.8).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

16.6.7.2 Frozen mode

32072A-AVR32-03/09

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the synchronized NWAIT signal is deasserted, the SMC com-
pletes the access, resuming the access from the point where it was stopped. See Figure 16-25
on page 193. This mode must be selected when the external device uses the NWAIT signal to
delay the access and to freeze the SMC.

Alm L 192

Y 5

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure

16-26 on page 194.

CLK_SMC

Figure 16-25. Write Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE = 2).

o NN NI S P Ll/ull |||||||||||| ;
o
o
NY//
— o~
w
—_ bt - ——— - — 4 —_ ——
<
o
z - o
w
o
[}
JRNDRR RN E S Iy A0 R g A R - ___ @
— ~ 2
=
- -|||--|||_‘vﬂ T T

N ™
® <
< n
~
(e}
N~ AN __ Y
~ (%) > =
3 s 8 3 :
N, W z =) 2
< [a) z

NBSO, NBS1,
A0, A1

Internally synchronized
NWAIT signal

193

1 (NWE controlled)
7

2 (Frozen)

5

EXNWMODE
WRITEMODE
NWEPULSE
NCSWRPULSE

Y 5

AIMEL

32072A-AVR32-03/09

= 2).

Figure 16-26. Read Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE

A[25:2] K
I

CLK_SMC

NBSO, NBS1

D

A0, Al

Internally synchronized

NWAIT signal

Read cycle

2 (Frozen)

EXNWMODE

0 (NCS controlled)

READMODE

Assertion is ignored

6

5, NCSRDHOLD

=2, NRDHOLD

NRDPULSE

=3

NCSRDPULSE

194

AIMEL

Y 5

32072A-AVR32-03/09

16.6.7.3 Ready mode

In Ready mode (MODE.EXNWMODE = 3), the SMC behaves differently. Normally, the SMC
begins the access by down counting the setup and pulse counters of the read/write controlling
signal. In the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 16-27 on page 195 and Figure
16-28 on page 196. After deassertion, the access is completed: the hold step of the access is
performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 16-28 on page 196.

Figure 16-27. NWAIT Assertion in Write Access: Ready Mode (MODE.EXNWMODE = 3).

CLK_SMC

A[25:2]

NBSO, NBS1,
AO, Al

NWE

NCS

D[15:0]

NWAIT

Internally synchronized
NWAIT signal

32072A-AVR32-03/09

Ve
i

L Ny O oy Y [oy By B
S S ——— I
: L : | :}2ZENSTA'E'E/: i i i
Nl unn an v auny Sl E o
G S S S 3 N S S ————
L R

Write cycle

A

Y

EXNWMODE = 3 (Ready mode)
WRITEMODE =1 (NWE_controlled)

NWEPULSE =5
NCSWRPULSE =7

Alm L 195

Y 5

= 3).

Figure 16-28. NWAIT Assertion in Read Access: Ready Mode (EXNWMODE

CLK_SMC

)
D

NBSO, NBS1

A

EXNWMODE

3 (Ready mode)
0 (NCS_controlled)

READMODE

AO, Al
Internally synchronized
NWAIT signal

Assertion is innﬂed

Assertion is ignored

7

NRDPULSE

=7

NCSRDPULSE

196

AIMEL

Y 5

32072A-AVR32-03/09

16.6.7.4 NWAIT latency and read/write timings

There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the two cycles of resynchronization
plus one cycle. Otherwise, the SMC may enter the hold state of the access without detecting the
NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated
on Figure 16-29 on page 197.

When the MODE.EXNWMODE field is enabled (ready or frozen), the user must program a pulse
length of the read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 synchronization cycles + 1 cycle

Figure 16-29. NWAIT Latency

CLK_SMC

A[25:2]

NBSO, NBS1,
A0, Al

NRD

NWAIT

nternally synchronized
NWAIT signal

32072A-AVR32-03/09

--K7-

INTT/NT T

Wai STATE

TV

i

Y

A

Minimal pdllse length

%

NWAIT latency P cycle resymchronizatiom

T T
| |
| |
I?ead cycle :

A

Y

| |
EXNWMODE =R or 3 |
READMODE = 1 (NRD conttolled)
| | |

|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NRI%)PULSE =5l | |

Alm L 197

Y 5

16.6.8 Slow Clock Mode
The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the SMC’s Power Management Controller is asserted because
CLK_SMC has been turned to a very slow clock rate (typically 32 kHz clock rate). In this mode,
the user-programmed waveforms are ignored and the slow clock mode waveforms are applied.
This mode is provided so as to avoid reprogramming the User Interface with appropriate wave-
forms at very slow clock rate. When activated, the slow mode is active on all chip selects.

16.6.8.1 Slow clock mode waveforms
Figure 16-30 on page 198 illustrates the read and write operations in slow clock mode. They are
valid on all chip selects. Table 16-5 on page 198 indicates the value of read and write parame-
ters in slow clock mode.

Figure 16-30. Read and Write Cycles in Slow Clock Mode

CLK_SMC ‘ | | |

CLK_SMC \ | |
| |

A[25:2] X

|
<
| |
| | |
NBSO, NBS1, } t
| |
| |
|
|
|
|
|
|
|
|
|

NBSO, NBS1, 3<
AO, Al

€ TP <,
l——>! | |

NCS ' [I NCS >
| | 1 | I

| ' | o

| NWECYCLES = 3 | NRDCYCLES=2 |

|< ;| ﬂ—>,

SLOW CLOCK MODE WRITE * SLOW CLOCK MODE READ

Table 16-5. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)
NRDSETUP 1 NWESETUP 1
NRDPULSE 1 NWEPULSE 1
NCSRDSETUP 0 NCSWRSETUP 0
NCSRDPULSE 2 NCSWRPULSE 3
NRDCYCLE 2 NWECYCLE 3

AIMEL 198

32072A-AVR32-03/09 I ©

16.6.8.2 Switching from (to) slow clock mode to (from) normal mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters. See Figure 16-31
on page 199. The external device may not be fast enough to support such timings.

Figure 16-32 on page 200 illustrates the recommended procedure to properly switch from one
mode to the other.

Figure 16-31. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode

Internal signal from PM

CLK_SMC

A[25:2]

}
X .
1 |
NBSO, NBS1, 1 f h/
A0, Al ::X D(I IX |
	[]
]]]
k /	f\ oo k [[
NWE	
1	1
	1
NCS N	If f\ If
! I	
	[
NWECYCLE = 3 ' I NWECYCLE = 7
SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITE NORMAL MODE WRITE
[
[
!
This write cycle finishes with the slow clock mode set Slow clock mode transition is detected:
of parameters after the clock rate transition Reload Configuration Wait State

32072A-AVR32-03/09

AIMEL 199

Y 5

AT32UC3A3

Figure 16-32. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

Slow Clock Mode
Internal signal from PM |

CLK_SMC I | | | |

A[25:2] j(

NBSO, NBS1,
A0, Al '

%

w
~— -

R e

= e] e] — e —

NCS i\ I | I
|]] |/

I ' [I
I sLow cLock MmopE wriTE | IDLE STATE NORMAL MODE WRITE
I I (i '

Reload Configuration
Wait State

-]

16.6.9 Asynchronous Page Mode
The SMC supports asynchronous burst reads in page mode, providing that the Page Mode
Enabled bit is written to one in the MODE register (MODE.PMEN). The page size must be con-
figured in the Page Size field in the MODE register (MODE.PS) to 4, 8, 16, or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 16-6 on page 200.

With page mode memory devices, the first access to one page (t,,) takes longer than the subse-
quent accesses to the page (t;,) as shown in Figure 16-33 on page 201. When in page mode,
the SMC enables the user to define different read timings for the first access within one page,
and next accesses within the page.

Table 16-6. Page Address and Data Address within a Page

Page Size Page Address® Data Address in the Page®
4 bytes A[25:2] A[1:0]
8 bytes A[25:3] A[2:0]
16 bytes A[25:4] A[3:0]
32 bytes A[25:5] A[4:0]

Notes: 1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored.

16.6.9.1 Protocol and timings in page mode
Figure 16-33 on page 201 shows the NRD and NCS timings in page mode access.

Alm L 200

32072A-AVR32-03/09 I ©

AT32UC3A3
Figure 16-33. Page Mode Read Protocol (Address MSB and LSB Are Defined in Table 16-6 on page 200)
ewswe || L] L] | L] L | |

A[MSB] :::$<' A><
X

|

|

|

|
A[LSB] %< ¢

X

NRD

|

|

|

|

|
N

A 4

NCS

2 XX

|
|
|
|
|
|
l
|
|
|
]
|
tsa I tsa
|
|
|
I
|
|
|
|
|
»l

NCSRDPULSE NRDPULSE

[
|
|
|
|
[
|
|
|
|
|
|
|
|
[
|
|
|
[
|
|
NRDPULSE I
;I

|

|

|

|

|

|

|

|

|

I

|

|

|

|

|
kl‘

Y

o115 ECCELECE

»i
LY

A

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
PULSE.NCSRDPULSE field value. The pulse length of subsequent accesses within the page
are defined using the PULSE.NRDPULSE field value.

In page mode, the programming of the read timings is described in Table 16-7 on page 201:

Table 16-7. Programming of Read Timings in Page Mode

Parameter Value Definition

READMODE X' No impact

NCSRDSETUP X' No impact

NCSRDPULSE toa Access time of first access to the page
NRDSETUP X' No impact

NRDPULSE tsa Access time of subsequent accesses in the page
NRDCYCLE X' No impact

The SMC does not check the coherency of timings. It will always apply the NCSRDPULSE tim-
ings as page access timing (t,,) and the NRDPULSE for accesses to the page (i), even if the
programmed value for t,, is shorter than the programmed value for t,.

16.6.9.2 Byte access type in page mode
The byte access type configuration remains active in page mode. For 16-bit or 32-bit page mode
devices that require byte selection signals, configure the MODE.BAT bit to zero (byte select
access type).

Alm L 201

32072A-AVR32-03/09 I ©

16.6.9.3 Page mode restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

16.6.9.4 Sequential and non-sequential accesses

If the chip select and the MSB of addresses as defined in Table 16-6 on page 200 are identical,
then the current access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tg,). Figure 16-34 on page 202 illustrates access to an 8-bit mem-
ory device in page mode, with 8-byte pages. Access to D1 causes a page access with a long
access time (t,,). Accesses to D3 and D7, though they are not sequential accesses, only require
a short access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Figure 16-34. Access to Non-sequential Data within the Same Page

axswe | L[L] L] | L[] L] |

A[25:3] j<
I

Al2], AL, AO

NRD

NCS

D[7:0]

32072A-AVR32-03/09

X
N
~

Page address

- — — -+ —

<X

Al J’>< A3 >< A7

Sld | —— e e = -

|
|
[
|
|
|
|
|
|
t
|
|
|
|
1]

LKL D1

NCSRDPULSE

PXXL w8 p) XX o

|
NRDPULSE : NRDPULSE

A

Y

»ld il
L) L

Alm L 202

Y 5

16.7 User Interface

The SMC is programmed using the registers listed in Table 16-8 on page 203. For each chip select, a set of four registers
is used to program the parameters of the external device connected on it. In Table 16-8 on page 203, “CS_number”
denotes the chip select number. Sixteen bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing anyone of the Mode Registers.

Table 16-8. SMC Register Memory Map

Offset Register Register Name Access Reset
0x00 + CS_number*0x10 Setup Register SETUP Read/Write 0x01010101
0x04 + CS_number*0x10 Pulse Register PULSE Read/Write 0x01010101
0x08 + CS_number*0x10 Cycle Register CYCLE Read/Write 0x00030003
0x0C + CS_number*0x10 Mode Register MODE Read/Write 0x10002103

AIMEL 203

32072A-AVR32-03/09 I ©

16.7.1 Setup Register

Register Name: SETUP

Access Type: Read/Write

Offset: 0x00 + CS_number*0x10

Reset Value: 0x01010101
31 30 29 28 27 26 25 24

‘ - \ - \ NCSRDSETUP ‘
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ NRDSETUP ‘
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ NCSWRSETUP ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ NWESETUP ‘

¢ NCSRDSETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

NCS Setup Length in read access = (128 x NCSRDSETUP[5] + NCSRDSETUP[4:0]) clock cycles

» NRDSETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

NRD Setup Length = (128 x NRDSETUP[5] + NRDSETUP[4:0]) clock cycles

¢ NCSWRSETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

NCS Setup Length in write access = (128 x NCSWRSETUP[5] + NCSWRSETUP[4:0]) clock cycles

+ NWESETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE Setup Length = (128 x NWESETUP[5] + NWESETUP[4:0]) clock cycles

AIMEL 204

32072A-AVR32-03/09 I ©

16.7.2 Pulse Register

Register Name: PULSE

Access Type: Read/Write

Offset: 0x04 + CS_number*0x10

Reset Value: 0x01010101
31 30 29 28 27 26 25 24

‘ - \ NCSRDPULSE ‘
23 22 21 20 19 18 17 16

‘ _ ‘ NRDPULSE ‘
15 14 13 12 11 10 9 8

‘ - ‘ NCSWRPULSE ‘
7 6 5 4 3 2 1 0

‘ - ‘ NWEPULSE ‘

* NCSRDPULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

NCS Pulse Length in read access = (256 x NCSRDPULSE[6]+ NCSRDPULSE[5:0]) clock cycles

The NCS pulse length must be at least one clock cycle.
In page mode read access, the NCSRDPULSE field defines the duration of the first access to one page.
« NRDPULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD Pulse Length = (256 x NRDPULSE[6] + NRDPULSE[5:0]) clock cycles

The NRD pulse length must be at least one clock cycle.

In page mode read access, the NRDPULSE field defines the duration of the subsequent accesses in the page.
¢ NCSWRPULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS Pulse Length in write access = (256 x NCSWRPULSE[6] + NCSWRPULSE[5:0]) clock cycles

The NCS pulse length must be at least one clock cycle.
¢ NWEPULSE: NWE Pulse Length

The NWE signal pulse length is defined as:

NWE Pulse Length = (256 x NWEPULSE[6] + NWEPULSE[5:0]) clock cycles

The NWE pulse length must be at least one clock cycle.

AIMEL 205

32072A-AVR32-03/09 I ©

16.7.3 Cycle Register

Register Name:
Access Type:

Offset:

CYCLE
Read/Write

0x08 + CS_number*0x10

Reset Value: 0x00030003
31 30 29 28 27 26 25 24

‘ _ _ _ _ - - - NRDCYCLEJg] ‘
23 22 21 20 19 18 17 16

‘ NRDCYCLE[7:0] ‘
15 14 13 12 11 10 9 8

‘ _ _ _ _ - - - NWECYCLE[8] ‘
7 6 5 4 3 2 1 0

NWECYCLE[7:0]

« NRDCYCLE[8:0]: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse and
hold steps of the NRD and NCS signals. It is defined as:

« NWECYCLE[8:0]: Total Write Cycle Length

Read Cycle Length = (256 x NRDCYCLE[8:7] + NRDCYCLE[6:0]) clock cycles

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse and
hold steps of the NWE and NCS signals. It is defined as:

32072A-AVR32-03/09

Write Cycle Length = (256 x NWECYCLE[8:7] + NWECYCLE[6:0]) clock cycles

ATMEL

Y 5

206

16.7.4

Access Type:

Mode Register
Register Name:

MODE
Read/Write

Offset: 0x0C + CS_number*0x10

Reset Value: 0x10002103
31 30 29 28 27 26 25 24

‘ - \ - PS \ - - - PMEN ‘
23 22 21 20 19 18 17 16

‘ - ‘ - - TDFMODE ‘ TDFCYCLES ‘
15 14 13 12 11 10 9 8

‘ - ‘ - DBW ‘ - - ‘ - BAT ‘
7 6 5 4 3 2 1 0

‘ - ‘ - EXNWMODE ‘ - - ‘ WRITEMODE ‘ READMODE ‘

« PS: Page Size

If page mode is enabled, this field indicates the size of the page in bytes.

PS Page Size

0 4-byte page
1 8-byte page
2 16-byte page
3 32-byte page

< PMEN: Page Mode Enabled

¢ TDFCYCLES: Data Float Time

1: Asynchronous burst read in page mode is applied on the corresponding chip select.

0: Standard read is applied.
 TDFMODE: TDF Optimization

1: TDF optimization is enabled. The number of TDF wait states is optimized using the setup period of the next read/write
access.
0: TDF optimization is disabled.The number of TDF wait states is inserted before the next access begins.

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge of the
read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDFCYCLES period. The external

bus cannot be used by another chip select during TDFCYCLES plus one cycles. From 0 up to 15 TDFCYCLES can be set.

32072A-AVR32-03/09

ATMEL

Y 5

207

« DBW: Data Bus Width

DBW Data Bus Width
0 8-bit bus
1 16-bit bus
2 Reserved
3 Reserved

* BAT: Byte Access Type
This field is used only if DBW defines a 16-bit data bus.

BAT Byte Access Type
Byte select access type:
0 Write operation is controlled using NCS, NWE, NBSO, NBS1
Read operation is controlled using NCS, NRD, NBS0O, NBS1
Byte write access type:
1 Write operation is controlled using NCS, NWRO, NWR1
Read operation is controlled using NCS and NRD

« EXNWMODE: External WAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of the

read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for
the read and write controlling signal.

EXNWMODE External NWAIT Mode

0 Disabled:
the NWAIT input signal is ignored on the corresponding chip select.

1 Reserved
Frozen Mode:

2 if asserted, the NWAIT signal freezes the current read or write cycle. after deassertion, the read or write cycle
is resumed from the point where it was stopped.
Ready Mode:

3 the NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling read
or write signal, to complete the access. If high, the access normally completes. If low, the access is extended
until NWAIT returns high.

« WRITEMODE: Write Mode
1: The write operation is controlled by the NWE signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be

inserted after the setup of NWE.
0: The write operation is controlled by the NCS signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be

inserted after the setup of NCS.

32072A-AVR32-03/09

ATMEL

Y 5

208

« READMODE: Read Mode

READMODE Read Access Mode

The read operation is controlled by the NCS signal.
0 If TDF are programmed, the external bus is marked busy after the rising edge of NCS.
If TDF optimization is enabled (TDFMODE = 1), TDF wait states are inserted after the setup of NCS.

The read operation is controlled by the NRD signal.
1 If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
If TDF optimization is enabled (TDFMODE =1), TDF wait states are inserted after the setup of NRD.

AIMEL 209

32072A-AVR32-03/09 I ©

17. SDRAM Controller (SDRAMC)
Rev: 2.2.0.3

17.1 Features
e 128-Mbytes address space
* Numerous configurations supported
— 2K, 4K, 8K row address memory parts
— SDRAM with two or four internal banks
— SDRAM with 16-bit data path
* Programming facilities
— Word, halfword, byte access
— Automatic page break when memory boundary has been reached
— Multibank ping-pong access
— Timing parameters specified by software
— Automatic refresh operation, refresh rate is programmable
— Automatic update of DS, TCR and PASR parameters (mobile SDRAM devices)
* Energy-saving capabilities
— Self-refresh, power-down, and deep power-down modes supported
— Supports mobile SDRAM devices
e Error detection
— Refresh error interrupt
* SDRAM power-up initialization by software
* CAS latency of one, two, and three supported
* Auto Precharge command not used

17.2 Overview
The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit SDRAM device. The page size supports ranges from 2048 to 8192
and the number of columns from 256 to 2048. It supports byte (8-bit) and halfword (16-bit)
accesses.

The SDRAMC supports a read or write burst length of one location. It keeps track of the active
row in each bank, thus maximizing SDRAM performance, e.g., the application may be placed in
one bank and data in the other banks. So as to optimize performance, it is advisable to avoid
accessing different rows in the same bank.

The SDRAMC supports a CAS latency of one, two, or three and optimizes the read access
depending on the frequency.

The different modes available (self refresh, power-down, and deep power-down modes) mini-
mize power consumption on the SDRAM device.

AIMEL 210

32072A-AVR32-03/09 I ©

17.3 Block Diagram

Figure 17-1. SDRAM Controller Block Diagram

SDCK > > —>| SDCK
SDRAMC SDCKE » —PDSDCKE
Chip Select -
Memory i sbes —)DSDCS
Controller R
SDRAMC it > = —)| ADDRI[17:16]
Interrupt RAS > —)I RAS
CAS » — —PDCAS
SDWE
Power CLK_SDRAMC SDRAMC - > o —>| SDWE
Manager > DOMIOL of Wux Logic Controller —>| ADDR[0]
DQM[1]]
—> NWE1
SDRAMC_A[9:0]
> e —>| ADDR[11:2]
SDRAMCiA[IO]: I:lSDAlO
SDRAMC_A[12:11]
User Interface D[15:0] : |:| ADDR[13:14]
A < > <—>|:| DATA[15:0]
Eeripheral Bus v _
17.4 1/O Lines Description
Table 17-1. 1/O Lines Description
Name Description Type Active Level
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Chip Select OQutput Low
BA[1:0] Bank Select Signals Output
RAS Row Signal Output Low
CAS Column Signal Output Low
SDWE SDRAM Write Enable Output Low
DQMI[1:0] Data Mask Enable Signals Output High
SDRAMC_A[12:0] Address Bus Output
D[15:0] Data Bus Input/Output

17.5 Application Example

1751

32072A-AVR32-03/09

Hardware Interface

Figure 17-2 on page 212 shows an example of SDRAM device connection using a 16-bit data
bus width. It is important to note that this example is given for a direct connection of the devices
to the SDRAMC, without External Bus Interface or I1/O Controller multiplexing.

ATMEL

Y 5

211

AT32UC3A3

Figure 17-2. SDRAM Controller Connections to SDRAM Devices: 16-bit Data Bus Width

DO-D31
RAS 2Mx8 2Vx8
CAS —
I SDRAM SDRAM
SDCK
D0-D7 DO-D7 \ D8-D15 DO-D7
SDWE cS cs
DOMO-Y] aK CLK
CKE /
WE AO'AgﬁéSDRANCAlo 4 %E ACAO AT s
RAS o I —1RAs D
CAS BAl —— CAS % BAL
SDRAM o DOM (/oo | DQM
Controller
SDRAMC_A[0-12
02
BAL
SDCS——

17.5.2 Software Interface

The SDRAM address space is organized into banks, rows, and columns. The SDRAMC allows

mapping different memory types according to the values set in the SDRAMC Configuration Reg-
ister (CR).

The SDRAMC's function is to make the SDRAM device access protocol transparent to the user.
Table 17-2 on page 213 to Table 17-4 on page 213 illustrate the SDRAM device memory map-

ping seen by the user in correlation with the device structure. Various configurations are
illustrated.

Alm L 212

32072A-AVR32-03/09 I ©

17.5.2.1 16-bit memory data bus width

Table 17-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
BA[1:0] Row[10:0] Column(7:0] MO
BA[1:0] ‘ ROW[10:0] ‘ Column[8:0] MO
BA[1:0] ‘ Row[10:0] ‘ Column([9:0] MO
BA[1:0] ‘ Row[10:0] ‘ Column[10:0] MO

Table 17-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
BA[1:0] Row[11:0] Column(7:0] MO
BA[1:0] ‘ Row([11:0] ‘ Column[8:0] MO
BA[1:0] ‘ Row[11:0] ‘ Column([9:0] MO
BA[1:0] ‘ Row([11:0] ‘ Column[10:0] MO

Table 17-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
BA[1:0] Row[12:0] Column(7:0] MO
BA[1:0] ‘ Row([12:0] ‘ Column[8:0] MO
BA[1:0] ‘ Row[12:0] ‘ Column([9:0] MO
BA[1:0] ‘ Row([12:0] ‘ Column[10:0] MO

Notes: 1. MO is the byte address inside a 16-bit halfword.

17.6 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

17.6.1 I/O Lines
The SDRAMC module signals pass through the External Bus Interface (EBI) module where they
are multiplexed. The user must first configure the 1/0 controller to assign the EBI pins corre-
sponding to SDRAMC signals to their peripheral function. If I/O lines of the EBI corresponding to
SDRAMC signals are not used by the application, they can be used for other purposes by the
I/O Controller.

AIMEL 213

32072A-AVR32-03/09 I ©

17.6.2 Power Management

The SDRAMC must be properly stopped before entering in reset mode, i.e., the user must issue
a Deep power mode command in the Mode (MD) register and wait for the command to be
completed.

17.6.3 Clocks

The clock for the SDRAMC bus interface (CLK_SDRAMC) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the SDRAMC before disabling the clock, to avoid freezing the SDRAMC in an undefined

State.

17.6.4 Interrupts

The SDRAMC interrupt request line is connected to the interrupt controller. Using the SDRAMC
interrupt requires the interrupt controller to be programmed first.

17.7 Functional Description

17.71 SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1.

32072A-AVR32-03/09

SDRAM features must be defined in the CR register by writing the following fields with
the desired value: asynchronous timings (TXSR, TRAS, TRCD, TRP, TRC, and TWR),
Number of Columns (NC), Number of Rows (NR), Number of Banks (NB), CAS Latency
(CAS), and the Data Bus Width (DBW).

For mobile SDRAM devices, Temperature Compensated Self Refresh (TCSR), Drive
Strength (DS) and Partial Array Self Refresh (PASR) fields must be defined in the Low
Power Register (LPR).

The Memory Device Type field must be defined in the Memory Device Register
(MDR.MD).

A No Operation (NOP) command must be issued to the SDRAM devices to start the
SDRAM clock. The user must write the value one to the Command Mode field in the
SDRAMC Mode Register (MR.MODE) and perform a write access to any SDRAM
address.

A minimum pause of 200us is provided to precede any signal toggle.

An All Banks Precharge command must be issued to the SDRAM devices. The user
must write the value two to the MR.MODE field and perform a write access to any
SDRAM address.

Eight Auto Refresh commands are provided. The user must write the value four to the
MR.MODE field and performs a write access to any SDRAM location eight times.

A Load Mode Register command must be issued to program the parameters of the
SDRAM devices in its Mode Register, in particular CAS latency, burst type, and burst
length. The user must write the value three to the MR.MODE field and perform a write
access to the SDRAM. The write address must be chosen so that BA[1:0] are set to
zero. See Section 17.8.1 for details about Load Mode Register command.

For mobile SDRAM initialization, an Extended Load Mode Register command must be
issued to program the SDRAM devices parameters (TCSR, PASR, DS). The user must
write the value five to the MR.MODE field and perform a write access to the SDRAM.
The write address must be chosen so that BA[1] or BA[O] are equal to one. See Section
17.8.1 for details about Extended Load Mode Register command.

ATMEL

Y 5

214

Figure 17-3.

| |
SDCKE |/ | | | It | | | | |t | | |t |
| | | [I | < l | RC | 1 > —L1 "I > I |

10. The user must go into Normal Mode, writing the value 0 to the MR.MODE field and per-
forming a write access at any location in the SDRAM.

11. Write the refresh rate into the Refresh Timer Count field in the Refresh Timer Register
(TR.COUNT). The refresh rate is the delay between two successive refresh cycles. The
SDRAM device requires a refresh every 15.625us or 7.81ps. With a 100MHz fre-
guency, the TR register must be written with the value 1562 (15.625 pus x 100 MHz) or
781 (7.81 ps x 100 MHz).

After initialization, the SDRAM devices are fully functional.

SDRAM Device Initialization Sequence

A

SDRAMC_A[9:0]

|

A10

)

SDRAMC_A[12:11]

)

NENENES

))
))
))
N T T S
))
))
))

SDCS /
! !					
RAS 5 A T Iy e Ve AT					
]]]]		
CAS S [S:l\	1		
t t t t t t i					
: : : | | | | | |
] |] |]]
SDWE 6__ | | | S: | | | |
l 1 t f T T 1 T 1
I | | | | | | | | |
DQM | | | I | I I I I I
I I I | | | | | | |

Inputs Stable for Precharge All Banks 1st Auto Refresh 8th Auto Refresh LMR Command Valid Command

200 usec

17.7.2 SDRAM Controller Write Cycle

The SDRAMC allows burst access or single access. In both cases, the SDRAMC keeps track of
the active row in each bank, thus maximizing performance. To initiate a burst access, the
SDRAMC uses the transfer type signal provided by the master requesting the access. If the next
access is a sequential write access, writing to the SDRAM device is carried out. If the next
access is a write-sequential access, but the current access is to a boundary page, or if the next
access is in another row, then the SDRAMC generates a precharge command, activates the
new row and initiates a write command. To comply with SDRAM timing parameters, additional
clock cycles are inserted between precharge and active (tgp) commands and between active
and write (tgcp) cOmmands. For definition of these timing parameters, refer to the Section
17.8.3. This is described in Figure 17-4 on page 216.

Alm L 215

32072A-AVR32-03/09 I ©

AT32UC3A3

Figure 17-4. Write Burst, 16-bit SDRAM Access

|
|
|
SbCs !
T
|

trep =3

Y

-

SDCK l I

Rown X Colai XCoIbXCOIcXCoIdXCoIeXCO”XCO|9><Colh><CoIi><ConXC0|k><CO||>C

|
SDRAMC_A[12:0] X i
|
e
o T | -
! i
1] :
|
D[15:0] i < [%na X Dan Dnc>< Dnd >< Dne X Dnf X DngX Dnh >< Dni X Dnj X Dnk X Dnl >—
! |

17.7.3 SDRAM Controller Read Cycle

32072A-AVR32-03/09

The SDRAMC allows burst access, incremental burst of unspecified length or single access. In
all cases, the SDRAMC keeps track of the active row in each bank, thus maximizing perfor-
mance of the SDRAM. If row and bank addresses do not match the previous row/bank address,
then the SDRAMC automatically generates a precharge command, activates the new row and
starts the read command. To comply with the SDRAM timing parameters, additional clock cycles
on SDCK are inserted between precharge and active (tzp) commands and between active and
read (tgcp) cOmmands. These two parameters are set in the CR register of the SDRAMC. After a
read command, additional wait states are generated to comply with the CAS latency (one, two,
or three clock delays specified in the CR register).

For a single access or an incremented burst of unspecified length, the SDRAMC anticipates the
next access. While the last value of the column is returned by the SDRAMC on the bus, the
SDRAMC anticipates the read to the next column and thus anticipates the CAS latency. This
reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

Alm L 216

Y 5

AT32UC3A3

Figure 17-5. Read Burst, 16-bit SDRAM Access

tRCD =3 CAS =2

»l »
» Ll

[
[
I

SDCS |
I
I
[

SDCK | | I

ol cXCoI d ><Co| eX Col f X

|
|
SDRAMC_A[12:0] X ! Rown X colal XcolbX
|
|

RAS I|

CAS

SDWE

I I e T

D[15:0]
(Input)

<< Dna: >§< Dnb>§< Dnc >§< Dnd>§< Dne>§< Dnf >7

17.7.4 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAMC generates a precharge command, activates the new row and initiates a read
or write command. To comply with SDRAM timing parameters, an additional clock cycle is
inserted between the precharge and active (tzp) commands and between the active and read
(tzcp) commands. This is described in Figure 17-6 on page 218.

Alm L 217

32072A-AVR32-03/09 I ©

Figure 17-6. Read Burst with Boundary Row Access

Trp =3

Row n

SDRAMC_A[12:0] X Col a X Col b X Col c X Col X

X col bXCLI c Xcold X Cole X

RAS

CAS |

il
SDWE |_E_l

L —

<<Dmab§< Dmb>§<Dmc>§< Dmd>§<Dme>—

17.7.5 SDRAM Controller Refresh Cycles
An auto refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto refresh automatically.
The SDRAMC generates these auto refresh commands periodically. An internal timer is loaded
with the value in the Refresh Timer Register (TR) that indicates the number of clock cycles
between successive refresh cycles.

A refresh error interrupt is generated when the previous auto refresh command did not perform.
In this case a Refresh Error Status bit is set in the Interrupt Status Register (ISR.RES). It is
cleared by reading the ISR register.

When the SDRAMC initiates a refresh of the SDRAM device, internal memory accesses are not
delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the device is
busy and the master is held by a wait signal. See Figure 17-7 on page 219.

Alm L 218

32072A-AVR32-03/09 I ©

Figure 17-7. Refresh Cycle Followed by a Read Access

=3 tro=3 I cas=2

—d -y _

\ 4

V.

Rown

X:Rome Col a

e LT L L

~__ L

D50~ N oW W
ke

17.7.6 Power Management
Three low power modes are available:

* Self refresh mode: the SDRAM executes its own auto refresh cycles without control of the
SDRAMC. Current drained by the SDRAM is very low.

« Power-down mode: auto refresh cycles are controlled by the SDRAMC. Between auto refresh
cycles, the SDRAM is in power-down. Current drained in power-down mode is higher than in
self refresh mode.

* Deep power-down mode (only available with mobile SDRAM): the SDRAM contents are lost,
but the SDRAM does not drain any current.

The SDRAMC activates one low power mode as soon as the SDRAM device is not selected. It is
possible to delay the entry in self refresh and power-down mode after the last access by config-
uring the Timeout field in the Low Power Register (LPR.TIMEOUT).

17.7.6.1 Self refresh mode
This mode is selected by writing the value one to the Low Power Configuration Bits field in the
SDRAMC Low Power Register (LPR.LPCB). In self refresh mode, the SDRAM device retains
data without external clocking and provides its own internal clocking, thus performing its own
auto refresh cycles. All the inputs to the SDRAM device become “don’t care” except SDCKE,
which remains low. As soon as the SDRAM device is selected, the SDRAMC provides a
sequence of commands and exits self refresh mode.

Some low power SDRAMSs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)

Alm L 219

32072A-AVR32-03/09 I ©

and Drive Strength (DS) parameters must be set by writing the corresponding fields in the LPR
register, and transmitted to the low power SDRAM device during initialization.

After initialization, as soon as the LPR.PASR, LPR.DS, or LPR.TCSR fields are modified and
self refresh mode is activated, the SDRAMC issues an Extended Load Mode Register command
to the SDRAM and the Extended Mode Register of the SDRAM device is accessed automati-
cally. The PASR/DS/TCSR parameters values are therefore updated before entry into self
refresh mode.

The SDRAM device must remain in self refresh mode for a minimum period of tz45 and may
remain in self refresh mode for an indefinite period. This is described in Figure 17-8 on page
220.

Figure 17-8. Self Refresh Mode Behavior

SDRAMC_A[12:0]

SDCK

SDCKE

SDCS

RAS

CAS

SDWE

Self Refresh Mode

A 4

%

L L

L L L.

4

Access Request
To the SDRAM Controller

17.7.6.2 Low power mode

32072A-AVR32-03/09

This mode is selected by writing the value two to the LPR.LPCB field. Power consumption is
greater than in self refresh mode. All the input and output buffers of the SDRAM device are
deactivated except SDCKE, which remains low. In contrast to self refresh mode, the SDRAM
device cannot remain in low power mode longer than the refresh period (64ms for a whole
device refresh operation). As no auto refresh operations are performed by the SDRAM itself, the
SDRAMC carries out the refresh operation. The exit procedure is faster than in self refresh
mode.

This is described in Figure 17-9 on page 221.

Alm L 220

Y 5

AT32UC3A3

Figure 17-9. Low Power Mode Behavior

Trep =3 CAS=2

|
jLow Power Moge

»
»

V.

SDCS

|
SDCK | ' | ‘

| |
| |

SDRAMC_A[12:0] X | rown X Colai X cot bX ol ¢ Col d X Col e X Col X
|
|
|

RAS |

CAS

D[15:0]
(input)

«Dna >§<Dnb >§\<Dnc >§<Dnd >§< Dne >§<an >

[
[
:
[
[
[
|
SDCKE |
|
[
[
]
[
[

17.7.6.3 Deep power-down mode
This mode is selected by writing the value three to the LPR.LPCB field. When this mode is acti-
vated, all internal voltage generators inside the SDRAM are stopped and all data is lost.

When this mode is enabled, the user must not access to the SDRAM until a new initialization
sequence is done (See Section 17.7.1).

This is described in Figure 17-10 on page 222.

Alm L 221

32072A-AVR32-03/09 I ©

Figure 17-10. Deep Power-down Mode Behavior

tRp:3

CAS : _F
| L_%__r___

SDWE |

SCKE

'(DIESJS] Wb X{ Dne X dnd

-

A mE|,® 222

32072A-AVR32-03/09

17.8 User Interface

Table 17-5. SDRAMC Register Memory Map

Offset Register Register Name Access Reset

0x00 Mode Register MR Read/Write 0x00000000
0x04 Refresh Timer Register TR Read/Write 0x00000000
0x08 Configuration Register CR Read/Write 0x852372C0
0x0C High Speed Register HSR Read/Write 0x00000000
0x10 Low Power Register LPR Read/Write 0x00000000
0x14 Interrupt Enable Register IER Write-only 0x00000000
0x18 Interrupt Disable Register IDR Write-only 0x00000000
0x1C Interrupt Mask Register IMR Read-only 0x00000000
0x20 Interrupt Status Register ISR Read-only 0x00000000
0x24 Memory Device Register MDR Read/Write 0x00000000

AIMEL 223

32072A-AVR32-03/09 I ©

17.8.1 Mode Register

Register Name: MR
Access Type: Read/Write
Offset: 0x00
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- r - r - r - [- | MoDE |
« MODE: Command Mode
This field defines the command issued by the SDRAMC when the SDRAM device is accessed.
MODE Description
0 Normal mode. Any access to the SDRAM is decoded normally.
1 The SDRAMC issues a “NOP” command when the SDRAM device is accessed regardless of the cycle.
2 The SDRAMC issues an “All Banks Precharge” command when the SDRAM device is accessed regardless of
the cycle.
The SDRAMC issues a “Load Mode Register” command when the SDRAM device is accessed regardless of the
3 cycle. This command will load the CR.CAS field into the SDRAM device Mode Register. All the other parameters
of the SDRAM device Mode Register will be set to zero (burst length, burst type, operating mode, write burst
mode...).
4 The SDRAMC issues an “Auto Refresh” command when the SDRAM device is accessed regardless of the cycle.
Previously, an “All Banks Precharge” command must be issued.
The SDRAMC issues an “Extended Load Mode Register” command when the SDRAM device is accessed
5 regardless of the cycle. This command will load the LPR.PASR, LPR.DS, and LPR.TCR fields into the SDRAM
device Extended Mode Register. All the other bits of the SDRAM device Extended Mode Register will be set to
zero.
6 Deep power-down mode. Enters deep power-down mode.

AImEl 224

32072A-AVR32-03/09 I ©

17.8.2 Refresh Timer Register

Register Name: TR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘] ‘] ‘] \] \ COUNT[11:8] \
7 6 5 4 3 2 1 0

‘ COUNTI[7:0] \

¢ COUNTI[11:0]: Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh burst

is initiated.

The value to be loaded depends on the SDRAMC clock frequency (CLK_SDRAMC), the refresh rate of the SDRAM device and
the refresh burst length where 15.6s per row is a typical value for a burst of length one.

To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is issued
and no refresh of the SDRAM device is carried out.

AIMEL 225

32072A-AVR32-03/09 I ©

17.8.3 Configuration Register

Register Name: CR

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x852372C0
31 30 29 28 27 26 25 24

‘ TXSR ‘ TRAS ‘
23 22 21 20 19 18 17 16

‘ TRCD ‘ TRP ‘
15 14 13 12 11 10 9 8

‘ TRC ‘ TWR ‘
7 6 5 4 3 2 1 0

‘ DBW CAS NB ‘ NR NC ‘

¢ TXSR: Exit Self Refresh to Active Delay
Reset value is eight cycles.

This field defines the delay between SCKE set high and an Activate command in number of cycles. Number of cycles is between
0 and 15.

¢ TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate command and a Precharge command in number of cycles. Number of cycles is
between 0 and 15.

¢ TRCD: Row to Column Delay
Reset value is two cycles.

This field defines the delay between an Activate command and a Read/Write command in number of cycles. Number of cycles
is between 0 and 15.

« TRP: Row Precharge Delay
Reset value is three cycles.

This field defines the delay between a Precharge command and another command in number of cycles. Number of cycles is
between 0 and 15.

* TRC: Row Cycle Delay
Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is between 0
and 15.

¢ TWR: Write Recovery Delay
Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.

« DBW: Data Bus Width
Reset value is 16 bits.

0: Reserved.
1: Data bus width is 16 bits.

AIMEL 226

32072A-AVR32-03/09 I ©

e CAS: CAS Latency
Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles is managed.

CAS CAS Latency (Cycles)
0 Reserved
1 1
2 2
3 3

« NB: Number of Banks
Reset value is two banks.

NB Number of Banks
0 2
1 4

¢ NR: Number of Row Bits
Reset value is 11 row bits.

NR Row Bits
0 11
1 12
2 13
3 Reserved

¢ NC: Number of Column Bits
Reset value is 8 column bits.

NC Column Bits
0 8
1 9
2 10
3 11

AIMEL 227

32072A-AVR32-03/09 I ©

17.8.4 High Speed Register

Register Name: HSR

Access Type: Read/Write

Offset: 0x0C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

SR I I IR IR AR I T

« DA: Decode Cycle Enable
A decode cycle can be added on the addresses as soon as a non-sequential access is performed on the HSB bus.

The addition of the decode cycle allows the SDRAMC to gain time to access the SDRAM memory.
1: Decode cycle is enabled.
0: Decode cycle is disabled.

A mE|,® 228

32072A-AVR32-03/09

17.8.5 Low Power Register

Register Name: LPR

Access Type: Read/Write

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - ! - - [- @ - [- - -]
23 22 21 20 19 18 17 16

. - ! - - [- 1 - [- - -]
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ TIMEOUT ‘ DS TCSR ‘
7 6 5 4 3 2 1 0

‘ - ‘ PASR ‘ - - LPCB ‘

¢ TIMEOUT: Time to Define when Low Power Mode Is Enabled

TIMEOUT Time to Define when Low Power Mode Is Enabled
0 The SDRAMC activates the SDRAM low power mode immediately after the end of the last transfer.
1 The SDRAMC activates the SDRAM low power mode 64 clock cycles after the end of the last transfer.
2 The SDRAMC activates the SDRAM low power mode 128 clock cycles after the end of the last transfer.
3 Reserved.

e DS: Drive Strength (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parameter must be
set according to the SDRAM device specification.
After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the
SDRAM device is accessed automatically and its DS parameter value is updated before entry in self refresh mode.

¢ TCSR: Temperature Compensated Self Refresh (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to set the refresh interval during self refresh mode depending on the

temperature of the low power SDRAM. This parameter must be set according to the SDRAM device specification.
After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the
SDRAM device is accessed automatically and its TCSR parameter value is updated before entry in self refresh mode.

* PASR: Partial Array Self Refresh (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks of the

SDRAM array are enabled. Disabled banks are not refreshed in self refresh mode. This parameter must be set according to the
SDRAM device specification.
After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the
SDRAM device is accessed automatically and its PASR parameter value is updated before entry in self refresh mode.

32072A-AVR32-03/09

ATMEL

Y 5

229

« LPCB: Low Power Configuration Bits

LPCB Low Power Configuration
Low power feature is inhibited: no power-down, self refresh or deep power-down command is issued to
0)
the SDRAM device.
The SDRAMC issues a self refresh command to the SDRAM device, the SDCLK clock is deactivated and
1 the SDCKE signal is set low. The SDRAM device leaves the self refresh mode when accessed and
enters it after the access.
The SDRAMC issues a power-down command to the SDRAM device after each access, the SDCKE
2 signal is set to low. The SDRAM device leaves the power-down mode when accessed and enters it after
the access.
3 The SDRAMC issues a deep power-down command to the SDRAM device. This mode is unique to low-
power SDRAM.

ATMEL

32072A-AVR32-03/09 I ©

230

17.8.6 Interrupt Enable Register

Register Name: IER

Access Type: Write-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | R |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

| | | | | I |
7 6 5 4 3 2 1 0

I | | | | | REs |

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

32072A-AVR32-03/09

ATMEL

231

17.8.7 Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | R |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

| | | | | I |
7 6 5 4 3 2 1 0

I | | | | | REs |

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

32072A-AVR32-03/09

ATMEL

232

17.8.8 Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

e e Res

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

A mE|,® 233

32072A-AVR32-03/09

17.8.9 Interrupt Status Register

Register Name: ISR

Access Type: Read-only

Offset: 0x20

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

I | | | RES

« RES: Refresh Error Status

This bit is set when a refresh error is detected.
This bit is cleared when the register is read.

32072A-AVR32-03/09

ATMEL

234

17.8.10 Memory Device Register

Register Name: MDR

Access Type: Read/Write

Offset: 0x24

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| R | | |
23 22 21 20 19 18 17 16

| R | | |
15 14 13 12 11 10 9 8

| I | | |
7 6 5 4 3 2 1 0

MD

« MD: Memory Device Type

MD Device Type
0 SDRAM
1 Low power SDRAM
Other Reserved

32072A-AVR32-03/09

ATMEL

235

18. Error Corrected Code Controller (ECCHRYS)

18.1 Features

18.2 Overview

32072A-AVR32-03/09

Rev. 1.0.0.0

e Hardware Error Corrected Code Generation with two methods :
— Hamming code detection and correction by software (ECC-H)
— Reed-Solomon code detection by hardware, correction by hardware or software (ECC-RS)
» Supports NAND Flash and SmartMedia™ devices with 8- or 16-bit data path for ECC-H, and with
8-bit data path for ECC-RS
» Supports NAND Flash and SmartMedia™ with page sizes of 528, 1056, 2112, and 4224 bytes
(specified by software)
e ECC_H supports :
— One bit correction per page of 512,1024,2048, or 4096 bytes
— One bit correction per sector of 512 bytes of data for a page size of 512, 1024, 2048, or 4096
bytes
— One bit correction per sector of 256 bytes of data for a page size of 512, 1024, 2048, or 4096
bytes
* ECC_RS supports :
— 4 errors correction per sector of 512 bytes of data for a page size of 512, 1024, 2048, and
4096 bytes with 8-bit data path

NAND Flash and SmartMedia™ devices contain by default invalid blocks which have one or
more invalid bits. Over the NAND Flash and SmartMedia™ lifetime, additional invalid blocks may
occur which can be detected and corrected by an Error Corrected Code (ECC).

The ECC Controller is a mechanism that encodes data in a manner that makes possible the
identification and correction of certain errors in data. The ECC controller is capable of single-bit
error correction and two-bit random detection when using the Hamming code (ECC-H) and four-
error correction whatever the number of erroneous bit in the byte error when using the Reed-Sol-
omon code (ECC-RS).

When NAND Flash/SmartMedia™ have more than two erroneous bits when using the Hamming
code (ECC-H) or more than four bits in error when using the Reed-Solomon code (ECC-RS), the
data cannot be corrected.

AIMEL 236

Y 5

18.3 Block Diagram

Figure 18-1. ECCHRS Block Diagram

NAND Fash
* Rom 1024x10 ——
o Encoder RS4 0 »| Error Evaluator
SmartMedia[*> GF29)
Logic + +
A Polynomial
Partial Syndrome —» process —» Chien Search
Y
Static ECC Controller ¢
Mooy > CHrl/ECC 1bit Algorith
f it Algorithm
Controller HECC J «—> User Interface
< Peripheral Bus ¢ >

18.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

18.4.1 I/O Lines

The ECCHRS signals pass through the External Bus Interface module (EBI) where they are
multiplexed.

The programmer must first configure the 1/0 Controller to assign the EBI pins corresponding to
the Static Memory Controller (SMC) signals to their peripheral function. If I/O lines of the EBI corre-
sponding to SMC signals are not used by the application, they can be used for other purposes by
the 1/0 Controller.

18.4.2 Power Management
If the CPU enters a sleep mode that disables clocks used by the ECCHRS, the ECCHRS will
stop functioning and resume operation after the system wakes up from sleep mode.

18.4.3 Clocks

The clock for the ECCHRS bus interface (CLK_ECCHRS) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the ECCHRS before disabling the clock, to avoid freezing the ECCHRS in an undefined
state.

18.4.4 Interrupts
The ECCHRS interrupt request line is connected to the interrupt controller. Using the ECCHRS
interrupt requires the interrupt controller to be programmed first.

Alm L 237

32072A-AVR32-03/09 I ©

18.5 Functional Description

1851

18.5.2

Write Access

Read Access

32072A-AVR32-03/09

A page in NAND Flash and SmartMedia™ memories contains an area for main data and an addi-
tional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page
size corresponds to the number of words in the main area plus the number of words in the extra
area used for redundancy.

Over time, some memory locations may fail to program or erase properly. In order to ensure that
data is stored properly over the life of the NAND Flash device, NAND Flash providers recom-
mend to utilize either one ECC per 256 bytes of data, one ECC per 512 bytes of data, or one
ECC for all of the page. For the next generation of deep micron SLC NAND Flash and with the
new MLC NAND Flash, it is also recommended to ensure at least a four-error ECC per 512
bytes whatever is the page size.

The only configurations required for ECC are the NAND Flash or the SmartMedia™ page size
(528/1056/2112/4224) and the type of correction wanted (one ECC-H for all the page, one ECC-
H per 256 bytes of data, one ECC-H per 512 bytes of data, or four-error ECC-RS per 512 bytes
of data). The page size is configured by writing in the Page Size field in the Mode Register
(MD.PAGESIZE). Type of correction is configured by writing the Type of Correction field in the
Mode Register (MD.TYPECORREC).

The ECC is automatically computed as soon as a read (0x00) or a write (0x80) command to the
NAND Flash or the SmartMedia™ is detected. Read and write access must start at a page
boundary.

The ECC results are available as soon as the counter reaches the end of the main area. The val-
ues in the Parity Registers (PRO to PR15) for ECC-H and in the Codeword Parity registers
(CWPSO00 to CWPS79) for ECC-RS are then valid and locked until a new start condition occurs
(read/write command followed by address cycles).

Once the Flash memory page is written, the computed ECC codes are available in PRO to PR15
registers for ECC-H and in CWPS00 to CWPS79 registers for ECC-RS. The ECC code values
must be written by the software application in the extra area used for redundancy. The number
of write access in the extra area depends on the value of the MD.TYPECORREC field.

For example, for one ECC per 256 bytes of data for a page of 512 bytes, only the values of PR0O
and PR1 must be written by the software application in the extra area. For ECC-RS, a NAND
Flash with page of 512 bytes, the software application will have to write the ten registers
CWPSO00 to CWPSO09 in the extra area, and would have to write 40 registers (CWPSO00 to
CWPS39) for a NAND Flash with page of 2048 bytes.

Other registers are meaningless.

After reading the whole data in the main area, the application must perform read accesses to the
extra area where ECC code has been previously stored. Error detection is automatically per-
formed by the ECC-H controller or the ECC-RS controller. In ECC-RS, writing a one to the Halt
of Computation bit in the ECC Mode Register (MD.FREEZE) allows to stop error detection when
software is jumping to the correct parity area.

Alm L 238

Y 5

32072A-AVR32-03/09

Figure 18-2. FREEZE signal waveform

Nand Flash page 2048B Spare Zone

| sws 7B 5128 5128 I []
L

The application can check the ECC Status Registers (SR1/SR2) for any detected errors. It is up
to the application to correct any detected error for ECC-H. The application can correct any
detected error or let the hardware do the correction by writing a one to the Correction Enable bit
in the MD register (MD.CORRS4) for ECC-RS.

ECC computation can detect four different circumstances:

No error: XOR between the ECC computation and the ECC code stored at the end of the
NAND Flash or SmartMedia™ page is equal to zero. All bits in the SR1 and SR2 registers will
be cleared.

Recoverable error: Only the Recoverable Error bits in the ECC Status registers
(SR1.RECERRnN and/or SR2.RECERRN) are set. The corrupted word offset in the read page
is defined by the Word Address field (WORDADDR) in the PRO to PR15 registers. The
corrupted bit position in the concerned word is defined in the Bit Address field (BITADDR) in
the PRO to PR15 registers.

ECC error: The ECC Error bits in the ECC Status Registers (SR1.ECCERRnN /
SR2.ECCERRN) are set. An error has been detected in the ECC code stored in the Flash
memory. The position of the corrupted bit can be found by the application performing an XOR
between the Parity and the NParity contained in the ECC code stored in the Flash memory.
For ECC-RS it is the responsibility of the software to determine where the error is located on
ECC code stored in the spare zone flash area and not on user data area.

Non correctable error: The Multiple Error bits (MULERRN) in the SR1 and SR2 registers are
set. Several unrecoverable errors have been detected in the Flash memory page.

ECC Status Registers, ECC Parity Registers are cleared when a read/write command is
detected or a software reset is performed.

For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) Hsiao code is used.
24-bit ECC is generated in order to perform one bit correction per 256 or 512 bytes for pages of
512/2048/4096 8-hit words. 32-bit ECC is generated in order to perform one bit correction per
512/1024/2048/4096 8- or 16-bit words.They are generated according to the schemes shown in
Figure 18-3 on page 240 and Figure 18-4 on page 241.

Alm L 239

Y 5

Figure 18-3. Parity Generation for 512/1024/2048/4096 8-bit Words

1% byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | o1
2" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | oan |
3“ byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | 016 PX
4" pyte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 |
(page size-3)th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | o1
(page size-2)th byte [Bit7 | Bit6 | Bit5 | Bit4 [Bit3 | Bit2 [Bit1 | Bit0 |[P8’ | o PX
(page size-1)th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | 016
page size th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 |

[PL|[Pr|{PL|[Pr]|[PL]|[PL||PL]||PL]

| P2 || p2' || P2 || P2’ |

| P4 || P4’ |

P1=bit7(+)bit5(+)bit3(+)bitl(+)P1

Page size =512 Px = 2048 P2=hit7(+)bit6(+)bit3(+)bit2(+)P2
Page size = 1024 Px = 4096 P4=hit7(+)bit6(+)bit5(+)bit4(+)P4
Page size = 2048 Px = 8192 P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'
Page size = 4096 Px = 16384 P2'=hit5(+)bit4(+)bit1(+)bit0O(+)P2'

P4'=hit7 (+)bit6(+)bit5(+)bit4(+)P4"

To calculate P8’ to PX' and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page size byte)
begin
if (3 [1] ==1)
P[2**3]=bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[213]
else
P[2%*3] " =bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[21*3]"
end

end

A mE|,® 240

32072A-AVR32-03/09

Figure 18-4. Parity Generation for 512/1024/2048/4096 16-bit Words
1* byte [Bit15][Bit14[Bit13[Bit12[Bit11[Bit10] Bit9 [Bit8 | [Bit7 | Bit6 | Bit5 | Bit4 [Bit3 [Bit2 | Bit1 | BitO |
2" byte [Bit15[Bit14][Bit13[Bit12]Bit11]Bit10] Bit9 | Bits | [Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bit0 | ”
P [E—
3 byte [Bit15[Bit14[Bit13[Bit12[Bit11[Bit10] Bit9 [Bit8 | [Bit7 | Bit6 [Bit5 [Bit4 | Bit3 | Bit2 | Bit1 [Bit0 | o1 PX
4" byte [Bit15]Bit14[Bit13]Bit12[Bit11[Bit10] Bit9 | Bit8 | [Bit7 | Bit6 | Bit5 [Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| | |

P16

(page size-3)th byte | Bit7 | Bit6 | Bit5 [Bit4 [Bit3 [Bit2 | Bit1 [Bito | [Bit7 [Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 [Bit0 | o1t
(page size-2)th byte [Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | [Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | BitO | bar | PX
(page size-1)th byte | Bit7 [Bit6 | Bit5 | Bit4 [Bit3 [Bit2 | Bit1 [Bito | [Bit7 [Bit6 [Bit5 [Bit4 | Bit3 | Bit2 [Bit1 [Bit0 |

page size th byte | Bit7 | Bit6 [Bit5 [Bit4 | Bit3 [Bit2 [Bit1 [Bit0o | [Bit7 [Bit6 | Bit5 [Bit4 [Bit3 | Bit2 | Bit1 [Bit0 |

P16’

P[Py][PL][Pr][PL][Pr][PL][P1] PpL|[Pr][PL][Pr][P]|[Pr][PL][P1]

[P2 | [P2’ | P2 | [P2’ |] P2 | [p2' | [P2 | P2’ |
[P4 | P4’ | P4 | P4’ |
[P5 |] P5' |

Page size = 512 Px = 2048 P1=hit15(+)bit13(+)bit11(+)bitd(+)bit7(+)bit5(+)bit3(+)bit1(+)P1

Page size = 1024 Px = 4096 P2=bit15(+)bit14(+)bit11(+)bit10(+)bit7(+)bit6(+)bit3(+)bit2(+)P2

Page size = 2048 Px = 8192 P4=hit15(+)bit14(+)bit13(+)bit12(+)bit7(+)bit6(+)bit5(+)bit4(+)P4

Page size = 4096 Px = 16384 P5=hit15(+)bit14(+)bit13(+)bit12(+)bit11(+)bitLO(+)bit9(+)bit8(+)P5

To calculate P8’ to PX’' and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page_size_word)
begin
if (3 [1] ==1)
P[23*3]= bitl15(+)bitl4 (+)bitl3 (+)bitl2 (+)
bitll(+)bitl0(+)bit9(+)bit8 (+)
bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[27"]
else
P [2i+3] "=bitl5(+)bitl4 (+)bitl3 (+)bitl2 (+)
bitll(+)bitl0(+)bit9 (+)bit8 (+)
bit7 (+)bité (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[2*"3]"
end

end

Alm L 241

32072A-AVR32-03/09 I ©

For ECC-RS, in order to perform 4-error correction per 512 bytes of 8-bit words, the codeword
have to be generated by the RS4 Encoder module and stored into the NAND Flash extra area,
according to the scheme shown in Figure 18-5 on page 242

Figure 18-5. RS Codeword Generation

Feedback

28

603 395 383 539
(0

o 397 o 402 o o o

Lol

Dataln
CWw5 Cw4 Cw3 Ccw2 Ccwi Cwo

32072A-AVR32-03/09

In read mode, firstly, the detection for any error is done with the partial syndrome module. It is
the responsibility of the ECC-RS Controller to determine after receiving the old codeword stored
in the extra area if there is any error on data and /or on the old codeword. If all syndromes (Si)
are equal to zero, there is no error, otherwise a polynomial representation is written into
CWPSO00 to CWPST79 registers. The Partial Syndrome module performs an algorithm according
to the scheme in Figure 18-6 on page 242

Figure 18-6. Partial Syndrome Block Diagram

_ —» S7
Mult o' e

- S2
- S1
RegOct P SO

Dataln(x)

If the Correction Enable bit is set in the ECC Mode Register (MD.CORRS4) then the polynomial
representation of error are sent to the polynomial processor. The aim of this module is to per-
form the polynomial division in order to calculate two polynomials, Omega (Z) and Lambda (2),
which are necessary for the two following modules (Chien Search and Error Evaluator). In order
to perform addition, multiplication, and division a Read Only Memory (ROM) has been added
containing the 1024 elements of the Galois field. Both Chien Search and Error Evaluator work in
parallel. The Error Evaluator has the responsibility to determine the Nth error value in the data
and in the old codeword according to the scheme in Figure 18-7 on page 243

Alm L 242

Y 5

32072A-AVR32-03/09

Figure 18-7. Error Evaluator Block Diagram

AT32UC3A3

A ogao’)] Rom 1024x10
GF(2") inverted

Array - Mul

ErrorLoc

t Error value
@ position j

The Chien Search takes charge of determining if an error has occurred at symbol N according to
the scheme in Figure 18-8 on page 243

Figure 18-8. Chien Search Block Diagram

(@)

Lo

Degree of Lambda —

Error Located
counter

Not

Flag error

Error located

ATMEL

Y 5

A odd(a)

243

18.6 User Interface

Table 18-1. ECCHRS Register Memory Map

Offset Register Name Access Reset
0x000 Control Register CTRL Write-only 0x00000000
0x004 Mode Register MD Read/write 0x00000000
0x008 Status Register 1 SR1 Read-only 0x00000000
0x00C Parity Register 0 PRO Read-only 0x00000000
0x010 Parity Register 1 PR1 Read-only 0x00000000
0x014 Status Register 2 SR2 Read-only 0x00000000
0x018 Parity Register 2 PR2 Read-only 0x00000000
0x01C Parity Register 3 PR3 Read-only 0x00000000
0x020 Parity Register 4 PR4 Read-only 0x00000000
0x024 Parity Register 5 PR5 Read-only 0x00000000
0x028 Parity Register 6 PR6 Read-only 0x00000000
0x02C Parity Register 7 PR7 Read-only 0x00000000
0x030 Parity Register 8 PRS8 Read-only 0x00000000
0x034 Parity Register 9 PR9 Read-only 0x00000000
0x038 Parity Register 10 PR10 Read-only 0x00000000
0x03C Parity Register 11 PR11 Read-only 0x00000000
0x040 Parity Register 12 PR12 Read-only 0x00000000
0x044 Parity Register 13 PR13 Read-only 0x00000000
0x048 Parity Register 14 PR14 Read-only 0x00000000
0x04C Parity Register 15 PR15 Read-only 0x00000000
0X050 - Ox18C CCC’: degvv\f’or? da;nd dssy;ndgfon:eofg CCV\\/’VPPSSO% Read-only 0x00000000
0x190 - 0x19C MaskData O - Mask Data 3 MDATAO - MDATA3 Read-only 0x00000000
0x1A0 - Ox1AC Address Offset 0 - Address Offset 3 ADOFFO - ADOFF3 Read-only 0x00000000
0x1BO Interrupt Enable Register IER Write-only 0x00000000
0x1B4 Interrupt Disable Register IDR Write-only 0x00000000
0x1B8 Interrupt Mask Register MR Read-only 0x00000000
0x1BC Interrupt Status Register ISR Read-only 0x00000000
0x1C0 Interrupt Status Clear Register ISCR Write-only 0x00000000
0x1FC Version Register VERSION Read-only -®

Note: 1. The reset value is device specific. Please refer to the Module Configuration section at the end of this chapter.

AIMEL 244

32072A-AVR32-03/09 I ©

18.6.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x000

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I S I R IR B B

e RST: RESET Parity
Writing a one to this bit will reset the ECC Parity registers.

Writing a zero to this bit has no effect.

This bit always reads as zero.

A “'lEl,® 245

32072A-AVR32-03/09

18.6.2 Mode Register

Name: MD

Access Type: Read/Write

Offset: 0x004

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I N - S N
23 22 21 20 19 18 17 16

I R - S R B
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - - - ‘ CORRS4 ‘ - ‘ FREEZE ‘
7 6 5 4 3 2 1 0

‘ - ‘ TYPECORREC - ‘ PAGESIZE ‘

¢ CORRS4: Correction Enable
Writing a one to this bit will enable the correction to be done after the Partial Syndrome process and allow interrupt to be sent to

CPU.

Writing a zero to this bit will stop the correction after the Partial Syndrome process.
1: The correction will continue after the Partial Syndrome process.

0: The correction will stop after the Partial Syndrome process.

 FREEZE: Halt of Computation
Writing a one to this bit will stop the computation.

Writing a zero to this bit will allow the computation as soon as read/write command to the NAND Flash or the SmartMedia™ is

detected.
1: The computation will stop until a zero is written to this bit.
0: The computation is allowed.

e TYPECORREC: Type of Correction

ECC code TYPECORREC Description
0b000 One bit correction per page
ECC-H 0b001 One bit correction per sector of 256 bytes
0b010 One bit correction per sector of 512 bytes
ECC-RS 0b100 Four bits correction per sector of 512 bytes
- Others Reserved

32072A-AVR32-03/09

ATMEL

246

* PAGESIZE: Page Size
This table defines the page size of the NAND Flash device when using the ECC-H code (TYPECORREC = 0b0xx).

Page Size Description
0 528 words

1 1056 words

2 2112 words

3 4224 words
Others Reserved

A word has a value of 8 bits or 16 bits, depending on the NAND Flash or SmartMedia™ memory organization.

This table defines the page size of the NAND Flash device when using the ECC-RS code (TYPECORREC = 0b1xx)

Page Size Description Comment

0 528 bytes 1 page of 512 bytes

1 1056 bytes 2 pages of 512 bytes
2 1584 bytes 3 pages of 512 bytes
3 2112 bytes 4 pages of 512 bytes
4 2640 bytes 5 pages of 512 bytes
5 3168 bytes 6 pages of 512 bytes
6 3696 bytes 7 pages of 512 bytes
7 4224 bytes 8 pages of 512 hytes

i.e.: for NAND Flash device with page size of 4096 bytes and 128 bytes extra area ECC-RS can manage any sub page of
512 bytes up to 8.

AIMEL 247

32072A-AVR32-03/09 I ©

18.6.3 Status Register 1

Name: SR1

Access Type: Read-only
Offset: 0x008

Reset Value: 0x000000000

MD.TYPECORREC=0b0xx, using ECC-H code

31 30 29 28 27 26 25 24

‘ - ‘ MULERR7 ‘ ECCERRY ‘ RECERRY ‘ - ‘ MULERRG6 ‘ ECCERRG ‘ RECERRG ‘
23 22 21 20 19 18 17 16

‘ - ‘ MULERRS ‘ ECCERRS ‘ RECERR5 ‘ - ‘ MULERR4 ‘ ECCERR4 ‘ RECERR4 ‘
15 14 13 12 11 10 9 8

‘ - | MULERRS3 ‘ ECCERRS3 ‘ RECERRS3 | - ‘ MULERR2 | ECCERR2 ‘ RECERR2 ‘
7 6 5 4 3 2 1 0

‘ - | MULERR1 ‘ ECCERR1 ‘ RECERRL1 | - ‘ MULERRO | ECCERRO ‘ RECERRO ‘

¢ MULERRnN: Multiple Error in the sector number n of 256/512 bytes in the page
1: Multiple errors are detected.

0: No multiple error is detected.

TYPECORREC Sector Size | Comments
0 page size Only MULERRO is used
1 256 MULERRO to MULERRY7 are used depending on the page size
2 512 MULERRO to MULERRY7 are used depending on the page size
Others Reserved

« ECCERRnN: ECC Error in the packet number n of 256/512 bytes in the page
1: A single bit error has occurred.

0: No error have been detected.

TYPECORREC Sector Size | Comments
Only ECCERRO is used
0 page size The user should read PRO and PR1 to know where the error occurs
in the page.
1 256 ECCERRO to ECCERRY7 are used depending on the page size
2 512 ECCERRO to ECCERRY7 are used depending on the page size
Others Reserved

AIMEL 248

32072A-AVR32-03/09 I ©

< RECERRnN: Recoverable Error in the packet number n of 256/512 Bytes in the page
1: Errors detected. If MULERRN is zero, a single correctable error was detected. Otherwise multiple uncorrected errors were
detected.

0: No errors have been detected.

TYPECORREC sector size | Comments
0 page size Only RECERRO is used
1 256 RECERRO to RECERRY7 are used depending on the page size
2 512 RECERRO to RECERRY7 are used depending on the page size
Others Reserved

MD.TYPECORREC=0b1xx, using ECC-RS code

31 30 29 28 27 26 25 24
- r - r - r - +r - - [- 7 - |
23 22 21 20 19 18 17 16
- r - r - r -+ - ;- [- 7 - |
15 14 13 12 11 10 9 8
- r - r - r - r - ;- [- [- |
7 6 5 4 3 2 1 0
‘ SYNVEC ‘

¢ SYNVEC: Syndrome Vector
After reading a page made of n sector of 512 bytes, this field returns which sector contains error detected after the syndrome
analysis.
The SYNVECIn] bit is set when there is at least one error in the corresponding sector.
The SYNVEC|n] bit is cleared when a read/write command is detected or a software reset is performed.
1: At least one error has occurred in the corresponding sector.
0: No error has been detected.

Bit Index (n) Sector Boundaries
0 0-511
1 512-1023
2 1023-1535
3 1536-2047
4 2048-2559

AIMEL 249

32072A-AVR32-03/09 I ©

Bit Index (n) Sector Boundaries
5 2560-3071
6 3072-3583
7 3584-4095

A mE|,® 250

32072A-AVR32-03/09

18.6.4 Parity Register 0

Name: PRO
Access Type: Read-only
Offset: 0x00C
Reset Value: 0x00000000

Using ECC-H code, one bit correction per page (MD.TYPECORREC=0b000)

31 30 29 28 27 26 25 24

. - - +r -+ - ;- &+ - ; - [- |
23 22 21 20 19 18 17 16

. - -+ -+ -+ -1+ - ; - § - |
15 14 13 12 11 10 9 8

‘ WORDADDR[11:4] ‘
7 6 5 4 3 2 1 0

‘ WORDADDR[3:0] BITADDR ‘

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

« WORDADDR: Word Address
During a page read, this field contains the word address (8-bit or 16-bit word, depending on the memory plane organization)

where an error occurred, if a single error was detected. If multiple errors were detected, this field is meaningless.

* BITADDR: Bit Address
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

Using ECC-H code, one bit correction per sector of 256 bytes (MD.TYPECORREC=0b001)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘] ‘ NPARITYO[10:4] ‘
15 14 13 12 11 10 9 8

AIMEL 251

32072A-AVR32-03/09 I ©

NPARITYO0[3:0] 0 WORDADDO[7:5]
7 6 5 4 3 2 1 0
WORDADDO[4:0] BITADDRO

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

* NPARITYO: Parity N
Parity calculated by the ECC-H.

« WORDADDRO: Corrupted Word Address in the page between the first byte and the 255th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If
multiple errors were detected, this field is meaningless.

« BITADDRO: Corrupted Bit Address in the page between the first byte and the 255th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple
errors were detected, this field is meaningless.

AIMEL 252

32072A-AVR32-03/09 I ©

Using ECC-H code, one bit correction per sector of 512 bytes (MD.TYPECORREC=0b010)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
‘ NPARITYO[11:4] ‘
15 14 13 12 11 10 9 8
‘ NPARITY0[3:0] WORDADDO[8:5] ‘
7 6 5 4 3 2 1 0
WORDADDO[4:0] BITADDRO

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

¢ NPARITYO: Parity N
Parity calculated by the ECC-H.

« WORDADDRO: Corrupted Word Address in the page between the first byte and the 511th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If
multiple errors were detected, this field is meaningless.

« BITADDRO: Corrupted Bit Address in the page between the first byte and the 511th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple
errors were detected, this field is meaningless.

AIMEL 253

32072A-AVR32-03/09 I ©

18.6.5 Parity Register 1

Name: PR1
Access Type: Read-only
Offset: 0x010
Reset Value: 0x00000000

Using ECC-H code, one bit correction per page (MD.TYPECORREC=0b000)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

‘ NPARITY[15:8] ‘

‘ NPARITY[7:0] ‘

*« NPARITY: Parity N
During a write, the field of this register must be written in the extra area used for redundancy (for a 512-byte page size:
address 514-515).

Using ECC-H code, one bit correction per sector of 256 bytes (MD.TYPECORREC=0b001)

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

‘ - \ NPARITY1[10:0] ‘

15 14 13 12 11 10 9 8

‘ NPARITY1[3:0] 0 ‘ WORDADD1[7:5] ‘
7 6 5 4 3 2 1 0

‘ WORDADD1[4:0] ‘ BITADDR1 ‘

N AImEl 254

32072A-AVR32-03/09 I ©

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

e NPARITY1: Parity N
Parity alculated by the ECC-H.

< WORDADDRLI: corrupted Word Address in the page between the 256th and the 511th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If

multiple errors were detected, this field is meaningless.

« BITADDRI1: corrupted Bit Address in the page between the 256th and the 511th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

Using ECC-H code, one bit correction per sector of 512 bytes (MD.TYPECORREC=0b010)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ NPARITY1[11:4] ‘
15 14 13 12 11 10 9 8

‘ NPARITY1[3:0] WORDADD1[8:5] ‘
7 6 5 4 3 2 1 0

‘ WORDADD1[4:0] BITADDR1 ‘

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

*« NPARITY1: Parity N
Parity calculated by the ECC-H.

« WORDADDRL1: Corrupted Word Address in the page between the 512th and the 1023th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If

multiple errors were detected, this field is meaningless.

« BITADDRL1: Corrupted Bit Address in the page between the 512th and the 1023th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

AIMEL 255

32072A-AVR32-03/09 I ©

18.6.6 Status Register 2

Name: SR2
Access Type: Read-only
Offset: 0x014
Reset Value: 0x00000000

MD.TYPECORREC=0b0xx, using ECC-H code

31 30 29 28 27 26 25 24

‘ - | MULERR15 ‘ ECCERR15 ‘ RECERR15 | - ‘ MULERR14 | ECCERR14 ‘ RECERR14 ‘
23 22 21 20 19 18 17 16

‘ - | MULERR13 ‘ ECCERR13 ‘ RECERR13 | - ‘ MULERR12 | ECCERR12 ‘ RECERR12 ‘
15 14 13 12 11 10 9 8

‘ - | MULERR11 ‘ ECCERR11 ‘ RECERRI11 | - ‘ MULERR10 | ECCERRI10 ‘ RECERR10 ‘
7 6 5 4 3 2 1 0

‘ - | MULERR9 ‘ ECCERR9 ‘ RECERR9 | - ‘ MULERRS | ECCERRS ‘ RECERRS ‘

¢ MULERRnN: Multiple Error in the sector number n of 256/512 bytes in the page
1: Multiple errors are detected.

0: No multiple error is detected.

TYPECORREC Sector Size | Comments
0 page size Only MULERRO is used
1 256 MULERRO to MULERRY7 are used depending on the page size
2 512 MULERRO to MULERRY7 are used depending on the page size
Others Reserved

« ECCERRnN: ECC Error in the packet number n of 256/512 bytes in the page
1: A single bit error has occurred.

0: No error is detected.

TYPECORREC sector size Comments
Only ECCERRO is used
0 page size The user should read PRO and PR1 to know where the error occurs
in the page.
1 256 ECCERRO to ECCERRY7 are used depending on the page size
2 512 ECCERRO to ECCERRY7 are used depending on the page size
Others Reserved

AIMEL 256

32072A-AVR32-03/09 I ©

MD.TYPECORREC=0b1xx, using ECC-RS code

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- - - - MULERR RECERR

Only one sub page of 512 bytes is corrected at a time. If several sub page are on error then it is necessary to do several time the
correction process.

MULERR: Multiple error
This bit is set to one when a multiple error have been detected by the ECC-RS.
This bit is cleared when a read/write command is detected or a software reset is performed.
1: Multiple errors detected: more than four errors.Registers for one ECC for a page of 512/1024/2048/4096 bytes
0: No multiple error detected
« RECERR: Number of recoverable errors if MULERR is zero

RECERR Comments
000 no error
001 one single error detected
010 two errors detected
011 three errors detected
100 four errors detected

AIMEL 257

32072A-AVR32-03/09 I ©

18.6.7 Parity Register 2 - 15

Name: PR2 - PR15
Access Type: Read-only
Offset: 0x018 - 0x04C
Reset Value: 0x00000000

A mE|,® 258

32072A-AVR32-03/09

Using ECC-H code, one bit correction per sector of 256 bytes (MD.TYPECORREC=0b001)

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

‘] | NPARITYn[10:4] ‘

15 14 13 12 11 10 9 8
NPARITYnN[3:0] 0 WORDADDN([7:5]
7 6 5 4 3 2 1 0
WORDADDN[4:0] BITADDRnN

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

« NPARITYn: Parity N
Parity calculated by the ECC-H.

« WORDADDRN: corrupted Word Address in the packet number n of 256 bytes in the page
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If

multiple errors were detected, this field is meaningless.

« BITADDRnN: corrupted Bit Address in the packet number n of 256 bytes in the page
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

Using ECC-H code, one bit correction per sector of 512 bytes (MD.TYPECORREC=0b010)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ NPARITYn[11:4] ‘
15 14 13 12 11 10 9 8

‘ NPARITYnN[3:0] WORDADDN[8:5] ‘
7 6 5 4 3 2 1 0

‘ WORDADDN[4:0] BITADDRN ‘

Once the entire main area of a page is written with data, this register content must be stored to any free location of the spare
area.
Only PR2 to PRY registers are available in this case.

AIMEL 259

32072A-AVR32-03/09 I ©

« NPARITYn: Parity N
Parity calculated by the ECC-H.

« WORDADDRN: corrupted Word Address in the packet number n of 512 bytes in the page
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If
multiple errors were detected, this field is meaningless.

« BITADDRnN: corrupted Bit Address in the packet number n of 512 bytes in the page
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

AIMEL 260

32072A-AVR32-03/09 I ©

18.6.8 Codeword 00 - Codeword79
CWPSO00 - CWPS79

Name:
Access Type:

Offset:

Read-only

0x050 - 0x18C

Reset Value: 0x00000000
Page Write:
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| CODEWORD |

« CODEWORD:

Once the 512 bytes of a page is written with data, this register content must be stored to any free location of the spare area.
For a page of 512 bytes the entire redundancy words are made of 8 words of 10 bits. All those redundancies words are

concatenated to a word of 80 bits and then cut to 10 words of 8 bits to facilitate their writing in the extra area.
At the end of a page write, this field contains the redundancy word to be stored to the extra area.

Page Read:
31 30 29 28 27 26 25 24

| | | |
23 22 21 20 19 18 17 16

| | | |
15 14 13 12 11 10 9 8

| | | |
7 6 5 4 3 2 1 0

‘ PARSYND ‘

32072A-AVR32-03/09

ATMEL

261

* PARSYND:
At the end of a page read, this field contains the Partial Syndrome S.

PARSYNDOO-PARSYNDO9: this conclude all the codeword and partial syndrome word for the sub page 1
PARSYND10-PARSYND19: this conclude all the codeword and partial syndrome word for the sub page 2
PARSYND20-PARSYND?29: this conclude all the codeword and partial syndrome word for the sub page 3
PARSYND30-PARSYND39: this conclude all the codeword and partial syndrome word for the sub page 4
PARSYND40-PARSYNDA49: this conclude all the codeword and partial syndrome word for the sub page 5
PARSYND50-PARSYND59: this conclude all the codeword and partial syndrome word for the sub page 6
PARSYND60-PARSYNDG69: this conclude all the codeword and partial syndrome word for the sub page 7
PARSYND70-PARSYND79: this conclude all the codeword and partial syndrome word for the sub page 8

AIMEL 262

32072A-AVR32-03/09 I ©

18.6.9 Mask Data O - Mask Data 3

Name: MDATAO -MDATA3

Access Type: Read-only

Offset: 0x190 - 0x19C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - 7°r -+t - °rr - [-} - |
23 22 21 20 19 18 17 16

. - - -1+ -+ - - [- [- |
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘] ‘] ‘ - ‘ MASKDATA[9:8] ‘
7 6 5 4 3 2 1 0

‘ MASKDATA[7:0] ‘

+ MASKDATA:

At the end of the correction process, this field contains the mask to be XORed with the data read to perform the final
correction.This XORed is under the responsibility of the software.
This field is meaningless if MD.CORRS4 is zero.

AIMEL 263

32072A-AVR32-03/09 I ©

18.6.10 Address Offset 0 - Address Offset 3

Name: ADOFFO - ADOFF3

Access Type: Read-only

Offset: 0x1A0 - Ox1AC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| i | i | i | i | i | i | OFFSET[9:8] |
7 6 5 4 3 2 1 0

‘ OFFSET[7:0] ‘

e OFFSET:

At the end of correction process, this field contains the offset address of the data read to be corrected.
This field is meaningless if MD.CORRS4 is zero.

A mE|,® 264

32072A-AVR32-03/09

18.6.11 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x1BO

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

Writing a zero to this bit has no effect.
Writing a one to this bit will set the corresponding bit in IMR.

A mE|,® 265

32072A-AVR32-03/09

18.6.12 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x1B4

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

Writing a zero to this bit has no effect.
Writing a one to this bit will clear the corresponding bit in IMR.

A mE|,® 266

32072A-AVR32-03/09

18.6.13 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x1B8

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

A “'lEl,® 267

32072A-AVR32-03/09

18.6.14 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x1BC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

This bit is cleared when the corresponding bit in ISCR is written to one.
This bit is set when a correction process has ended.

A “'lEl,® 268

32072A-AVR32-03/09

18.6.15 Interrupt Status Clear Register

Name: ISCR

Access Type: Write-only

Offset: 0x1CO0

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

Writing a zero to this bit has no effect
Writing a one to this bit will clear the corresponding bit in ISR and the corresponding interrupt request.

A “'lEl,® 269

32072A-AVR32-03/09

18.6.16 Version Register

Name: VERSION

Access Type: Read-only

Offset: Ox1FC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | I | |
23 22 21 20 19 18 17 16

‘] ‘] ‘] ‘] ‘ . ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘ - ‘ VERSION[11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION[7:0] ‘

¢ VARIANT: Variant Number
Reserved. No functionality associated.
« VERSION: Version Number
Version number of the module. No functionality associated.

A “'lEl,® 270

32072A-AVR32-03/09

18.7 Module Configuration

The specific configuration for the ECCHRS instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks according to the table in the
Power Manager section.

Table 18-2. Module clock name

Module name Clock name

ECCHRS CLK_ECCHRS

Table 18-3. Register Reset Values

Register Reset Value

VERSION 0x00000100

Alm L 271

32072A-AVR32-03/09 I ©

19. Peripheral DMA Controller (PDCA)

19.1 Features

19.2 Overview

32072A-AVR32-03/09

Rev: 1.1.0.0

e 8 channels

* Generates transfers to/from peripherals such as USART, SSC and SPI

* Two address pointers/counters per channel allowing double buffering

* Performance monitors to measure average and maximum transfer latency

The Peripheral DMA controller (PDCA) transfers data between on-chip peripheral modules such
as USART, SPI, SSC and memories (those memories may be on- and off-chip memories).
Using the PDCA avoids CPU intervention for data transfers, improving the performance of the
microcontroller. The PDCA can transfer data from memory to a peripheral or from a peripheral to
memory.

The PDCA consists of 8 DMA channels. Each channel has:

A 32-bit memory pointer
A 16-bit transfer counter
¢ A 32-bit memory pointer reload value
* A 16-bit transfer counter reload value

The PDCA communicates with the peripheral modules over a number of handshake interfaces.
The peripheral signals to the PDCA when it is ready to receive or transmit data. The PDCA
acknowledges the request when the transmission has started.

The number of handshake-interfaces may be higher than the number of DMA channels. If this is
the case, the DMA channel must be programmed to use the desired interface.

When a transmit buffer is empty or a receive buffer is full, an interrupt request can be signalled.

Alm L 272

Y 5

19.3 Block Diagram

Figure 19-1. PDCA Block Diagram

Perl%heral
HSB to PB —
Bridge
HSB ;
Perlplheral
a
. B
Bus Matrix @
=
s
HSB E i
- <> Perlpzheral
Peripheral DMA
Controller —p
(PDCA)
Interrupt | 'RQ Peripheral
Controller (n-1)
A\ A A |
Handshake Interfaces

19.4 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described
below.

194.1 Power Management
If the CPU enters a sleep mode that disables clocks used by the PDCA, the PDCA will stop func-
tioning and resume operation after the system wakes up from sleep mode. To avoid unexpected
results after waking up from sleep mode, it requires to be checked that all the data transfers
through PDCA are completed before entering a sleep mode.

19.4.2 Clocks
The PDCA has two bus clocks connected: One High Speed Bus clock (CLK_PDCA_HSB) and
one Peripheral Bus clock (CLK_PDCA_PB). These clocks are generated by the Power Man-
ager. Both clocks are enabled at reset, and can be disabled by writing to the Power Manager. It
is recommended to disable the PDCA before disabling the clocks, to avoid freezing the PDCA in
an undefined state.

19.4.3 Interrupts
The PDCA interrupt request line is connected to the interrupt controller. Using the PDCA inter-
rupt requires the interrupt controller to be programmed first.

Alm L 273

32072A-AVR32-03/09 I ©

19.4.4 Peripheral Events
The PDCA peripheral events are connected via the Peripheral Event System. Refer to the
Peripheral Event System chapter for details.

19.5 Functional Description

1951 Channel Configuration

Each channel in the PDCA has a set of configuration registers. Among these are the Memory
Address Register (MAR), the Peripheral Select Register (PSR) and the Transfer Counter Regis-
ter (TCR). The 32-bit MAR must be programmed with the start address of the memory buffer.
The register will be automatically updated after each transfer to point to the next location in
memory. The PSR must be programmed to select the desired peripheral/lhandshake interface.
The TCR determines the number of data items to be transferred. The counter will be decreased
by one for each data item that has been transferred.

Both the MAR and the TCR registers can be read at any time to check the progress of the
transfer.

Each channel has reload registers for the MAR and the TCR: the Memory Address Reload Reg-
ister (MARR) and the Transfer Counter Reload Register (TCRR). When the TCR reaches zero,
the values in the reload registers are loaded into MAR and TCR. In this way, the PDCA can
operate on two buffers for each channel.

Since a new transfer starts immediately when TCR gets a non-zero value, TCR and TCRR
should be the last registers to be written.

19.5.2 Memory Pointer
Each channel has a 32-bit Memory Address Register. This register holds the memory address
for the next transfer to be performed. The register is automatically updated after each transfer.
The address will be increased by either one, two or four depending on the size of the DMA trans-
fer (byte, halfword or word). The MAR can be read at any time during transfer.

19.5.3 Transfer Counter
Each channel has a 16-bit Transfer Counter Register. This register must be programmed with
the number of transfers to be performed. The TCR register should contain the number of data
items to be transferred independently of the transfer size. The TCR can be read at any time dur-
ing transfer to see the number of remaining transfers.

1954 Reload Registers
Both the MAR and the TCR have a reload register, respectively Memory Address Reload Regis-
ter and Transfer Counter Reload Register. These registers provide the possibility for the PDCA
to work on two memory buffers for each channel. When one buffer has completed, MAR and
TCR will be reloaded with the values in MARR and TCRR. The reload logic is always enabled
and will trigger if the TCR reaches zero while TCRR holds a non-zero value.

If TCR is zero when writing to TCRR and MARR, the TCR and MAR are automatically updated
with the value written in TCRR and MARR.

1955 Peripheral Selection
The Peripheral Select Register decides which peripheral should be connected to the PDCA
channel. Configuring PSR will both select the direction of the transfer (memory to peripheral or

Alm L 274

32072A-AVR32-03/09 I ©

19.5.6

19.5.7

19.5.8

19.5.9

19.5.10

19.5.11

Transfer Size

peripheral to memory), which handshake interface to use, and the address of the peripheral
holding register.

The transfer size can be set individually for each channel to be either byte, halfword or word (8-
bit, 16-bit or 32-bit respectively). Transfer size is set by writing the desired value to the Transfer
Size field in the Mode Register (MR.SIZE).

Enabling and Disabling

Interrupts

Priority

Error Handling

Each DMA channel is enabled by writing a one to the Transfer Enable bit in the Control Register
(CR.TEN) and disabled by writing a one to the Transfer Disable bit (CR.TDIS). The current sta-
tus can be read from the Status Register (SR).

Interrupts can be enabled by writing a one to the corresponding bit in the Interrupt Enable Regis-
ter (IER) and disabled by writing a one to the corresponding bit in the Interrupt Disable Register
(IDR). The Interrupt Mask Register (IMR) can be read to see whether an interrupt is enabled or
not. The current status of an interrupt source can be read through the Interrupt Status Register
(ISR).

The PDCA has three interrupt sources:

» Reload Counter Zero - The TCRR register is zero.
« Transfer Finished - Both the TCR and TCRR registers are zero.
« Transfer Error - An error has occurred in accessing memory.

If more than one PDCA channel is requesting transfer at a given time, the PDCA channels are
prioritized by their channel number. Channels with lower numbers have priority over channels
with higher numbers, giving channel zero the highest priority.

If the memory address is set to point to an invalid location in memory, an error will occur when
the PDCA tries to perform a transfer. When an error occurs, the Transfer Error bit in the Interrupt
Status Register (ISR.TERR) will be set and the DMA channel that caused the error will be
stopped. In order to restart the channel, the user must program the Memory Address Register to
a valid address and then write a one to the Error Clear bit in the Control Register (CR.ECLR). An
interrupt can optionally be triggered on errors by writing a one to the Transfer Error bit in the
Interrupt Enable Register (IER.TERR).

Performance Monitors

32072A-AVR32-03/09

The performance monitor hardware allows the user to measure the activity and stall cycles for
PDCA transfers. Performance monitoring is implemented for two PDCA channels, the other
channels cannot be monitored. This reduces the hardware cost of the feature. The selection of
the two PDCA channels to monitor is done through the PDCA Channel to Monitor with
Counter0/1 fields in the Performance Control Register (PCONTROL.MON1CH and PCON-
TROL.MONOCH). Due to performance monitor hardware resource sharing, the two monitor
channels should NOT be programmed to monitor the same PDCA channel. This may result in
UNDEFINED performance monitor behavior.

Alm L 275

Y 5

19.5.11.1 Measuring mechanisms

32072A-AVR32-03/09

Three different parameters can be measured by each channel:

« The number of data transfer cycles since last channel reset, both for read and write
« The number of stall cycles since last channel reset, both for read and write
« The maximum latency since last channel reset, both for read and write

These measurements can be extracted by software and used to generate indicators for bus
latency, bus load and maximum bus latency.

Each of the counters has a fixed width, and may therefore overflow. When overflow is encoun-
tered in either the Performance Channel Data Read/Write Cycle registers (PRDATAN and
PWDATAN) or Performance Channel Read/Write Stall Cycles registers (PRSTALLn and
PWSTALLRN) of a channel, all registers in the channel are reset. This behavior is altered if the
Channel Overflow Freeze bit is written to one in the Performance Control register (PCON-
TROL.CHNnOVF). If this bit is set, the channel registers are frozen when either DATA or STALL
reaches its maximum value. This simplifies one-shot readout of the counter values.

The registers can also be manually reset by writing a one to the Channel Reset bit in PCON-
TROL register (PCONTROL.CHNRES). The Performance Channel Read/Write Latency
registers (PRLATn and PWLATRN) are saturating when their maximum count value is reached.
The PRLATNn and PWLATN registers are reset only by the user writing the reset bits in PCON-
TROL (PCONTROL.CHNRES).

A counter must manually be enabled by writing a one to the Channel Enable bit in the Perfor-
mance Control Register (PCONTROL.CHNEN).

Alm L 276

Y 5

19.6 User Interface

19.6.1 Memory Map Overview
Table 19-1. PDCA Register Memory Map
Address Range Contents
0x000 - 0x03F DMA channel O configuration registers
0x040 - Ox07F DMA channel 1 configuration registers
0x1CO0 - Ox1FF DMA channel 7 configuration registers
0x800-0x830 Performance Monitor registers
0x834 Version register
19.6.2 Channel Memory Map
Table 19-2. PDCA Channel Register Memory Map
Offset Register Register Name Access Reset
0x000 + n*0x040 Memory Address Register MAR Read/Write 0x00000000
0x004 + n*0x040 Peripheral Select Register PSR Read/Write -@
0x008 + n*0x040 Transfer Counter Register TCR Read/Write 0x00000000
0x00C + n*0x040 Memory Address Reload Register MARR Read/Write 0x00000000
0x010 + n*0x040 Transfer Counter Reload Register TCRR Read/Write 0x00000000
0x014 + n*0x040 Control Register CR Write-only 0x00000000
0x018 + n*0x040 Mode Register MR Read/Write 0x00000000
0x01C + n*0x040 Status Register SR Read-only 0x00000000
0x020 + n*0x040 Interrupt Enable Register IER Write-only 0x00000000
0x024 + n*0x040 Interrupt Disable Register IDR Write-only 0x00000000
0x028 + n*0x040 Interrupt Mask Register IMR Read-only 0x00000000
0x02C + n*0x040 Interrupt Status Register ISR Read-only 0x00000000
19.6.3 Performance Monitor Memory Map
Table 19-3. PDCA Performance Monitor Register Memory Map
Offset Register Register Name Access Reset
0x800 Control PCONTROL Read/Write 0x00000000
0x804 Channel0 Read Data Cycles PRDATAO Read-only 0x00000000
0x808 Channel0 Read Stall Cycles PRSTALLO Read-only 0x00000000
0x80C Channel0 Read Max Latency PRLATO Read-only 0x00000000
0x810 Channel0 Write Data Cycles PWDATAO Read-only 0x00000000
0x814 Channel0 Write Stall Cycles PWSTALLO Read-only 0x00000000
0x818 Channel0 Write Max Latency PWLATO Read-only 0x00000000

32072A-AVR32-03/09

ATMEL

Y 5

277

Table 19-3. PDCA Performance Monitor Register Memory Map

Offset Register Register Name Access Reset

0x81C Channell Read Data Cycles PRDATA1 Read-only 0x00000000
0x820 Channell Read Stall Cycles PRSTALL1 Read-only 0x00000000
0x824 Channell Read Max Latency PRLAT1 Read-only 0x00000000
0x828 Channell Write Data Cycles PWDATA1 Read-only 0x00000000
0x82C Channell Write Stall Cycles PWSTALL1 Read-only 0x00000000
0x830 Channell Write Max Latency PWLAT1 Read-only 0x00000000

19.6.4 Version Register Memory Map

Table 19-4. PDCA Version Register Memory Map

Offset Register Register Name Access Reset

0x834 Version Register VERSION Read-only -@

Note: 1. The reset values are device specific. Please refer to the Module Configuration section at the end of this chapter.

AIMEL 278

32072A-AVR32-03/09 I ©

19.6.5 Memory Address Register

Name: MAR

Access Type: Read/Write

Offset: 0x000 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ MADDR[31:24] ‘
23 22 21 20 19 18 17 16

‘ MADDR([23:16] ‘
15 14 13 12 11 10 9 8

‘ MADDR[15:8] ‘
7 6 5 4 3 2 1 0

‘ MADDR(7:0] ‘

< MADDR: Memory Address
Address of memory buffer. MADDR should be programmed to point to the start of the memory buffer when configuring the

PDCA. During transfer, MADDR will point to the next memory location to be read/written.

AIMEL 279

32072A-AVR32-03/09 I ©

19.6.6
Name:

Access Type:

Read/Write

Peripheral Select Register
PSR

Offset: 0x004 + n*0x040
Reset Value: -

31 30 29 28 27 26 25 24
- - - SRR - -]
23 22 21 20 19 18 17 16
- - - T - -]
15 14 13 12 11 10 9 8
- - - SR - -]
7 6 5 4 3 2 1 0

PID

e PID: Peripheral Identifier

The Peripheral Identifier selects which peripheral should be connected to the DMA channel. Programming PID will select both
which handshake interface to use, the direction of the transfer and also the address of the Receive/Transfer Holding Register for
the peripheral. See the module configuration section of PDCA for details. The width of the PID field is implementation specific

and dependent on the number of peripheral modules in the microcontroller.

32072A-AVR32-03/09

ATMEL

Y 5

280

19.6.7 Transfer Counter Register

Name: TCR

Access Type: Read/Write

Offset: 0x008 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘ TCV[15:8] ‘
7 6 5 4 3 2 1 0

‘ TCV[7:0] ‘

e TCV: Transfer Counter Value
Number of data items to be transferred by PDCA. TCV must be programmed with the total number of transfers to be made.

During transfer, TCV contains the number of remaining transfers to be done.

AIMEL 281

32072A-AVR32-03/09 I ©

19.6.8 Memory Address Reload Register

Name: MARR

Access Type: Read/Write

Offset: 0x00C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ MARV[31:24] ‘
23 22 21 20 19 18 17 16

‘ MARV[23:16] ‘
15 14 13 12 11 10 9 8

‘ MARV[15:8] ‘
7 6 5 4 3 2 1 0

‘ MARV[7:0] ‘

* MARV: Memory Address Reload Value
Reload Value for the MAR register. This value will be loaded into MAR when TCR reaches zero if the TCRR register has a non-

zero value.

AIMEL 282

32072A-AVR32-03/09 I ©

19.6.9 Transfer Counter Reload Register

Name: TCRR

Access Type: Read/Write

Offset: 0x010 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘ TCRV[15:8] ‘
7 6 5 4 3 2 1 0

‘ TCRV[7:0] ‘

e TCRV: Transfer Counter Reload Value
Reload value for the TCR register. When TCR reaches zero, it will be reloaded with TCRV if TCRV has a positive value. If TCRV

is zero, no more transfers will be performed for the channel. When TCR is reloaded, the TCRR register is cleared.

AIMEL 283

32072A-AVR32-03/09 I ©

19.6.10 Control Register

Name: CR

Access Type: Write-only

Offset: 0x014 + n*0x040

Reset Value: 0x00000000

31 30 29 28 27 26 25 24
. - r - - +r+ -+ - - [- [- |
23 22 21 20 19 18 17 16
- - r - r - r - - - ;- -} - |
15 14 13 12 11 10 9 8
- - - - - - [- | er |
7 6 5 4 3 2 1 0
A e e e D e TR

e ECLR: Transfer Error Clear
Writing a one to this bit will clear the Transfer Error bit in the Status Register (SR.TERR). Clearing the SR.TERR bit will allow the

channel to transmit data. The memory address must first be set to point to a valid location.
Writing a zero to this bit has no effect.

¢ TDIS: Transfer Disable
Writing a one to this bit will disable transfer for DMA channel.

Writing a zero to this bit has no effect.

* TEN: Transfer Enable
Writing a one to this bit will enable transfer for DMA channel.

Writing a zero to this bit has no effect.

AIMEL 284

32072A-AVR32-03/09 I ©

19.6.11 Mode Register

Name: MR

Access Type: Read/Write

Offset: 0x018 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I O A B

¢ SIZE: Size of Transfer

Table 19-5. Size of Transfer

SIZE Size of Transfer
0 byte
1 halfword
2 word
3 Reserved

A mE|,® 285

32072A-AVR32-03/09

19.6.12 Status Register

Name: SR

Access Type: Read-only

Offset: 0x01C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I S S R I A B B

e TEN: Transfer Enabled
This bit is set when the TEN bit in CR register is written to one.

This bit is cleared when the TDIS bit in CR register is written to one.
1: Transfer is enabled for the DMA channel.
0: Transfer is disabled for the DMA channel.

A “'lEl,® 286

32072A-AVR32-03/09

19.6.13 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x020 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| | | | | |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

‘ ‘ ‘ ‘ ‘ TERR TRC RCZ ‘

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

32072A-AVR32-03/09

ATMEL

287

19.6.14 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x024 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| | | | | |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

‘ ‘ ‘ ‘ ‘ TERR TRC RCZ ‘

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

32072A-AVR32-03/09

ATMEL

288

19.6.15 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x028 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| | | | | |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

‘ - ‘ ‘ ‘ ‘ TERR TRC RCZ ‘

0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.

A bit in this register is set when the corresponding bit in IER is written to one.

32072A-AVR32-03/09

ATMEL

289

19.6.16 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x02C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ - ‘ TERR ‘ TRC ‘ RCZ ‘

¢ TERR: Transfer Error
1: A transfer error has occurred.

0: No transfer errors have occurred.

¢ TRC: Transfer Complete
1: Both the TCR and the TCRR are zero.

0: The TCR and/or the TCRR hold a non-zero value.

¢ RCZ: Reload Counter Zero
1: The TCRR is zero.

0: The TCRR holds a non-zero value.

A “'lEl,® 290

32072A-AVR32-03/09

19.6.17 Performance Control Register

Name: PCONTROL

Access Type: Read/Write

Offset: 0x800

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ - ‘ - ‘ MON1CH ‘
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ MONOCH ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘] ‘ - ‘ - ‘ CH1RES ‘ CHORES ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ CH10F ‘ CHOOF ‘ - ‘ - ‘ CH1EN ‘ CHOEN ‘

* MON1CH: PDCA Channel to Monitor with Counter 1
* MONOCH: PDCA Channel to Monitor with Counter O
Due to performance monitor hardware resource sharing, the two monitor channels should NOT be programmed to monitor the

same PDCA channel. This may result in UNDEFINED performance monitor behavior.

¢ CHI1RES: Channel 1 Counter Reset
Writing a one to this bit will reset the counter in the channel 1.

Writing a zero to this bit has no effect.
Always read as 0.

e CHORES: Channel 0 Counter Reset
Writing a one to this bit will reset the counter in the channel 0.

Writing a zero to this bit has no effect.
Always read as 0.
¢ CH1OF: Channel Overflow Freeze
1: All channel registers are frozen just before DATA or STALL overflows.
0: The channel registers are reset if DATA or STALL overflows.
¢ CH1OF: Channel Overflow Freeze
1: All channel registers are frozen just before DATA or STALL overflows.
0: The channel registers are reset if DATA or STALL overflows.
e CH1EN: Channel 1 Enable
1: Channel 1 is enabled.
0: Channel 1 is disabled.

¢ CHOEN: Channel 0 Enable
1: Channel 0 is enabled.

0: Channel 0 is disabled.

AIMEL 201

32072A-AVR32-03/09 I ©

19.6.18 Performance Channel 0 Read Data Cycles

Name: PRDATAO

Access Type: Read-only

Offset: 0x804

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset

Alm L 292

32072A-AVR32-03/09 I ©

19.6.19 Performance Channel 0 Read Stall Cycles

Name: PRSTALLO

Access Type: Read-only

Offset: 0x808

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset

Alm L 293

32072A-AVR32-03/09 I ©

19.6.20 Performance Channel 0 Read Max Latency

Name: PRLATO
Access Type: Read/Write
Offset: 0x80C
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - - - & - [- [- /|
23 22 21 20 19 18 17 16
I N S D e e e
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
This counter is saturating. The register is reset only when the reset bits in PCONTROL are written.

AIMEL 204

32072A-AVR32-03/09 I ©

19.6.21 Performance Channel 0 Write Data Cycles

Name: PWDATAO

Access Type: Read-only

Offset: 0x810

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset

Alm L 295

32072A-AVR32-03/09 I ©

19.6.22 Performance Channel 0 Write Stall Cycles

Name: PWSTALLO

Access Type: Read-only

Offset: 0x814

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset

Alm L 296

32072A-AVR32-03/09 I ©

19.6.23 Performance Channel 0 Write Max Latency

Name: PWLATO
Access Type: Read/Write
Offset: 0x818
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - - - & - [- [- /|
23 22 21 20 19 18 17 16
I N S D e e e
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
This counter is saturating. The register is reset only when the reset bits in PCONTROL are written.

AIMEL 207

32072A-AVR32-03/09 I ©

19.6.24 Performance Channel 1 Read Data Cycles

Name: PRDATAL

Access Type: Read-only

Offset: 0x81C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset

Alm L 298

32072A-AVR32-03/09 I ©

19.6.25 Performance Channel 1 Read Stall Cycles

Name: PRSTALL1

Access Type: Read-only

Offset: 0x820

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset

Alm L 299

32072A-AVR32-03/09 I ©

19.6.26 Performance Channel 1 Read Max Latency

Name: PLATR1
Access Type: Read/Write
Offset: 0x824
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - - - & - [- [- /|
23 22 21 20 19 18 17 16
I N S D e e e
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
This counter is saturating. The register is reset only when the reset bits in PCONTROL are written.

AIMEL 300

32072A-AVR32-03/09 I ©

19.6.27 Performance Channel 1 Write Data Cycles

Name: PWDATA1

Access Type: Read-only

Offset: 0x828

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset

Alm L 301

32072A-AVR32-03/09 I ©

19.6.28 Performance Channel 1 Write Stall Cycles

Name: PWSTALL1

Access Type: Read-only

Offset: 0x82C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset

Alm L 302

32072A-AVR32-03/09 I ©

19.6.29 Performance Channel 1 Write Max Latency

Name: PWLAT1
Access Type: Read/Write
Offset: 0x830
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - - - & - [- [- /|
23 22 21 20 19 18 17 16
I N S D e e e
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
This counter is saturating. The register is reset only when the reset bits in PCONTROL are written.

AIMEL 303

32072A-AVR32-03/09 I ©

19.6.30 PDCA Version Register

Name: VERSION

Access Type: Read-only

Offset: 0x834

Reset Value:
31 30 29 28 27 26 25 24

| | I | |
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ - ‘ - ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘ - ‘ VERSION[11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION[7:0] ‘

¢ VARIANT: Variant Number
Reserved. No functionality associated.
« VERSION: Version number
Version number of the module. No functionality associated.

A mE|,® 304

32072A-AVR32-03/09

19.7 Module Configuration

The specific configuration for the PDCA instance is listed in the following tables.

Table 19-6. Register Reset Values
Register Reset Value
PSRn n
VERSION 0x00000110

19.71 DMA Handshake Signals
The following table defines the valid settings for the Peripheral Identifier (PID) in the PDCA
Peripheral Select Register (PSR).).

32072A-AVR32-03/09

Table 19-7. PDCA Handshake Signals
PID Value Peripheral module & direction
0 ADC - RX
1 SSC - RX
2 USARTO - RX
3 USART1 - RX
4 USART2 - RX
5 USART3 - RX
6 TWIMO - RX
7 TWIM1 - RX
8 TWISO - RX
9 TWIS1 - RX
10 SPIO0 - RX
11 SPI1 - RX
12 SSC-TX
13 USARTO - TX
14 USART1 - TX
15 USART2 - TX
16 USART3 - TX
17 TWIMO - TX
18 TWIM1 - TX
19 TWISO - TX
20 TWIS1 - TX
21 SPIO - TX
22 SPI1-TX
23 DAC - TX

ATMEL

Y 5

305

20. DMA Controller (DMACA)

20.1 Features

20.2 Overview

32072A-AVR32-03/09

Rev: 2.0.6a.6

* 2 HSB Master Interfaces
* 4 Channels
* Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
* Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
* Single-block DMA Transfer
* Multi-block DMA Transfer
— Linked Lists
— Auto-Reloading
— Contiguous Blocks
* DMA Controller is Always the Flow Controller
* Additional Features
— Scatter and Gather Operations
— Channel Locking
— Bus Locking
— FIFO Mode
— Pseudo Fly-by Operation

The DMA Controller (DMACA) is an HSB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more System Bus. One channel is
required for each source/destination pair. In the most basic configuration, the DMACA has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two System Bus transfers are required for each DMA data transfer. This is
also known as a dual-access transfer.

The DMACA is programmed via the HSB slave interface.

AIMEL 306

Y 5

20.3 Block Diagram

Figure 20-1. DMA Controller (DMACA) Block Diagram
DMA Controller

HSB Slive HSB Slave | CEG Interrupt |rq_=dma

-t I/E Bl al Generator

| Channel 1
Channel 0
FIFO
HSB Master HSB Master
- -—P
IIF

SRC DST .
FSM FSM

20.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

20.4.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with GPIO lines.
The user must first program the GPIO controller to assign the DMACA pins to their peripheral
functions.

20.4.2 Power Management
To prevent bus errors the DMACA operation must be terminated before entering sleep mode.

20.4.3 Clocks

The CLK_DMACA to the DMACA is generated by the Power Manager (PM). Before using the
DMACA, the user must ensure that the DMACA clock is enabled in the power manager.

20.4.4 Interrupts
The DMACA interface has an interrupt line connected to the Interrupt Controller. Handling the
DMACA interrupt requires programming the interrupt controller before configuring the DMACA.

20.4.5 Peripherals
Both the source peripheral and the destination peripheral must be set up correctly prior to the
DMA transfer.

Alm L 307

32072A-AVR32-03/09 I ©

20.5 Functional Description

20.5.1 Basic Definitions
Source peripheral: Device on a System Bus layer from where the DMACA reads data, which is
then stored in the channel FIFO. The source peripheral teams up with a destination peripheral to
form a channel.

Destination peripheral: Device to which the DMACA writes the stored data from the FIFO (pre-
viously read from the source peripheral).

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMACA. A peripheral should be assigned as memory
only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured System Bus
layer and a destination peripheral on the same or different System Bus layer that occurs through
the channel FIFO. If the source peripheral is not memory, then a source handshaking interface
is assigned to the channel. If the destination peripheral is not memory, then a destination hand-
shaking interface is assigned to the channel. Source and destination handshaking interfaces can
be assigned dynamically by programming the channel registers.

Master interface: DMACA is a master on the HSB bus reading data from the source and writing
it to the destination over the HSB bus.

Slave interface: The HSB interface over which the DMACA is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMACA and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a
DMACA transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral. No special
DMACA handshaking signals are needed on the 1/O of the peripheral. This mode is useful for
interfacing an existing peripheral to the DMACA without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMACA or source/destination peripheral) that deter-
mines the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMACA should be programmed as the flow controller. If the
length of a block is not known prior to enabling the channel, the source or destination peripheral
needs to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (CFGx.FCMODE): Special mode that only applies when the destination
peripheral is the flow controller. It controls the pre-fetching of data from the source peripheral.

Alm L 308

32072A-AVR32-03/09 I ©

Transfer hierarchy: Figure 20-2 on page 309 illustrates the hierarchy between DMACA trans-
fers, block transfers, transactions (single or burst), and System Bus transfers (single or burst) for
non-memory peripherals. Figure 20-3 on page 309 shows the transfer hierarchy for memory.

Figure 20-2. DMACA Transfer Hierarchy for Non-Memory Peripheral

DMAC Transfer DMA Transfer
| Level
Block Transfer
Block Block Block Level
4 v v v
Burst Burst Burst Single DMA Transaction
Transaction | | Transaction Transaction Transactionl Level
v v Y Y l
System Bus| |System Bus System Bus| |System Bus System Bus
Burst Burst |- - Burst Single Single System Bus
Transfer Transfer Transfer Transfer Transfer Transfer Level
Figure 20-3. DMACA Transfer Hierarchy for Memory
DMAC Transfer DMA Transfer
| Level
lock Block Block Block Transfer
Bloc o oc Level
|
System Bus| [System Bus System Bus| [System Bus System Bus
Burst Burst - -~ Burst Single
Transfer Transfer Transfer Transfer Transfer Level

Block: A block of DMACA data. The amount of data (block length) is determined by the flow
controller. For transfers between the DMACA and memory, a block is broken directly into a
sequence of System Bus bursts and single transfers. For transfers between the DMACA and a
non-memory peripheral, a block is broken into a sequence of DMACA transactions (single and
bursts). These are in turn broken into a sequence of System Bus transfers.

Transaction: A basic unit of a DMACA transfer as determined by either the hardware or soft-
ware handshaking interface. A transaction is only relevant for transfers between the DMACA
and a source or destination peripheral if the source or destination peripheral is a non-memory
device. There are two types of transactions: single and burst.

AIMEL 309

32072A-AVR32-03/09 I ©

—Single transaction: The length of a single transaction is always 1 and is converted
to a single System Bus transfer.

—Burst transaction: The length of a burst transaction is programmed into the
DMACA. The burst transaction is converted into a sequence of System Bus bursts
and single transfers. DMACA executes each burst transfer by performing
incremental bursts that are no longer than the maximum System Bus burst size set.
The burst transaction length is under program control and normally bears some
relationship to the FIFO sizes in the DMACA and in the source and destination
peripherals.

DMA transfer: Software controls the number of blocks in a DMACA transfer. Once the DMA
transfer has completed, then hardware within the DMACA disables the channel and can gener-
ate an interrupt to signal the completion of the DMA transfer. You can then re-program the
channel for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

Multi-block DMA transfer: A DMA transfer may consist of multiple DMACA blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

—Linked lists (block chaining) — A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describe the next block (block descriptor) and an LLP register. The
DMACA fetches the LLI at the beginning of every block when block chaining is
enabled.

—Auto-reloading — The DMACA automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

—Contiguous blocks — Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination System Bus address is
incremented or decremented by a programmed amount -the scatter increment- when a scatter
boundary is reached. The destination System Bus address is incremented or decremented by
the value stored in the destination scatter increment (DSRx.DSI) field, multiplied by the number
of bytes in a single HSB transfer to the destination (decoded value of CTLX.DST_TR_WIDTH)/8.
The number of destination transfers between successive scatter boundaries is programmed into
the Destination Scatter Count (DSC) field of the DSRx register.

Scatter is enabled by writing a ‘1’ to the CTLx.DST_SCATTER_EN bit. The CTLx.DINC field
determines if the address is incremented, decremented or remains fixed when a scatter bound-
ary is reached. If the CTLx.DINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLXx.DST_SCATTER_EN bit is ignored, and the scatter feature is automati-
cally disabled.

Gather: Relevant to source transfers within a block. The source System Bus address is incre-
mented or decremented by a programmed amount when a gather boundary is reached. The
number of System Bus transfers between successive gather boundaries is programmed into the
Source Gather Count (SGRx.SGC) field. The source address is incremented or decremented by
the value stored in the source gather increment (SGRx.SGI) field multiplied by the number of
bytes in a single HSB transfer from the source -(decoded value of CTLX.SRC_TR_WIDTH)/8 -
when a gather boundary is reached.

Alm L 310

32072A-AVR32-03/09 I ©

Gather is enabled by writing a ‘1’ to the CTLXx.SRC_GATHER_EN bit. The CTLx.SINC field
determines if the address is incremented, decremented or remains fixed when a gather bound-
ary is reached. If the CTLx.SINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.SRC_GATHER_EN bit is ignored and the gather feature is automatically
disabled.

Note: For multi-block transfers, the counters that keep track of the number of transfer left to
reach a gather/scatter boundary are re-initialized to the source gather count (SGRx.SGC) and
destination scatter count (DSRx.DSC), respectively, at the start of each block transfer.

Figure 20-4. Destination Scatter Transfer

System Memory
-« Scatter Boundary AO + 0x220
bil ¥, di1
A0 +0x218 .,
D10 <\
D9 T
AO +0x208 S T R
D8 / a0 T —
AO +0x200 N R
~~~~~~~~~ - Data Stream
Scatter Increment o |do| 1| d2|d3|as |5 |a6| a7 |8 | dofano] d11|<J
X %
7 v — Scatter Boundary AO + 0x120
i
A0 +0x118 wdar
D6
AOQ +0x110 N
D5 Y
AO +0x108 S
D4 <
AQ +0x100 <
Scatter Increment » :
0x 080
LA A Scatter Boundary AQ + 0x020
D3 d3
A0 +0x018
D2 Y
A0 +0x010 ‘; 7 CTLx.DST_TR_WIDTH = 3'b011 (64bit/8 = 8 bytes)
0+ 0008 D1 /d DSRDSI=16
DO DSR.DSC=4
A0 DSR.DSI * 8 = 0x80 (Scatter Increment in bytes)
— ATTEL 311

32072A-AVR32-03/09 I ©



Figure 20-5. Source Gather Transfer

System Memory
-« Gather Boundary AO + 0x38
A0+ 0x034 D11 “\d11 Gather Increment = 4
+ ,
D10 A
AO+OXO30——— e
(D
AO+OXOC———— . e Data Stream
D8 ~~~~~~~~ .
A0 + Ox028 o2 |d3| o4 |5 | o6 |7 | o8 | do]aro] ara] >
> 4
A0 + 0x020 Gather Boundary AO + 0x24
20+ 0x01C D7 Gather Increment = 4
D6
A0 + 0x018
D5
A0 +0x014
D4 /
[ Gather Boundary A0 + 0x10
AO + 0X00C b3 Gather Increment =4
D2
AQ +0x008 o1 . CTLx.SRC_TR WIDTH = 3b010 (32bit/8 = 4 bytes)
AOQ +0x004 SGRSGI=1
DO [ SGR.SGC =4
A SGR.SGI * 4 = 0x4 (Gather Increment in bytes)

Channel locking: Software can program a channel to keep the HSB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the System Bus bus by
asserting hlock for the duration of a DMA transfer, block, or transaction (single or burst). Chan-
nel locking is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using System Bus bursts, eliminating the need to arbitrate for the HSB master
interface for each single System Bus transfer. When this mode is not enabled, the channel only
waits until the FIFO can transmit/accept a single System Bus transfer before requesting the
master bus interface.

Pseudo fly-by operation: Typically, it takes two System Bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different System Bus layers, it is possible for the
DMACA to fetch data from the source and store it in the channel FIFO at the same time as the
DMACA extracts data from the channel FIFO and writes it to the destination peripheral. This
activity is known as pseudo fly-by operation. For this to occur, the master interface for both
source and destination layers must win arbitration of their HSB layer. Similarly, the source and
destination peripherals must win ownership of their respective master interfaces.

AIMEL 312

32072A-AVR32-03/09 I ©




20.6 Arbitration for HSB Master Interface

Each DMACA channel has two request lines that request ownership of a particular master bus
interface: channel source and channel destination request lines.

Source and destination arbitrate separately for the bus. Once a source/destination state
machine gains ownership of the master bus interface and the master bus interface has owner-
ship of the HSB bus, then HSB transfers can proceed between the peripheral and the DMACA.

An arbitration scheme decides which of the request lines (2 * DMAH_NUM_CHANNELS) is
granted the particular master bus interface. Each channel has a programmable priority. A
request for the master bus interface can be made at any time, but is granted only after the cur-
rent HSB transfer (burst or single) has completed. Therefore, if the master interface is
transferring data for a lower priority channel and a higher priority channel requests service, then
the master interface will complete the current burst for the lower priority channel before switch-
ing to transfer data for the higher priority channel.

If only one request line is active at the highest priority level, then the request with the highest pri-
ority wins ownership of the HSB master bus interface; it is not necessary for the priority levels to
be unique.

If more than one request is active at the highest requesting priority, then these competing
requests proceed to a second tier of arbitration:

If equal priority requests occur, then the lower-numbered channel is granted.

In other words, if a peripheral request attached to Channel 7 and a peripheral request attached
to Channel 8 have the same priority, then the peripheral attached to Channel 7 is granted first.

20.7 Memory Peripherals

Figure 20-3 on page 309 shows the DMA transfer hierarchy of the DMACA for a memory periph-
eral. There is no handshaking interface with the DMACA, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMACA to attempt System Bus transfers to the peripheral once
the channel is enabled. If the peripheral slave cannot accept these System Bus transfers, it
inserts wait states onto the bus until it is ready; it is not recommended that more than 16 wait
states be inserted onto the bus. By using the handshaking interface, the peripheral can signal to
the DMACA that it is ready to transmit/receive data, and then the DMACA can access the
peripheral without the peripheral inserting wait states onto the bus.

20.8 Handshaking Interface

32072A-AVR32-03/09

Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMACA is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMACA that it is ready to trans-
fer/accept data over the System Bus. A non-memory peripheral can request a DMA transfer
through the DMACA using one of two handshaking interfaces:

eHardware handshaking
*Software handshaking

Alm L 313

Y 5



Software selects between the hardware or software handshaking interface on a per-channel
basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

20.8.1 Software Handshaking
When the slave peripheral requires the DMACA to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to
enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers LstSrcReg and
LstDstReg are not used, and the values in these registers are ignored.

20.8.1.1 Burst Transactions
Writing a 1 to the ReqSrcReg[x]/ReqDstReg[x] register is always interpreted as a burst transac-
tion request, where x is the channel number. However, in order for a burst transaction request to
start, software must write a 1 to the SglReqSrcReg[x]/SglRegDstReg[x] register.

You can write a 1 to the SglReqSrcReg[x]/SglReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[X]
registers in any order, but both registers must be asserted in order to initiate a burst transaction.
Upon completion of the burst transaction, the hardware clears the SgIReqSrcReg[x]/SglReqD-
stReg[x] and ReqSrcReg[x]/ReqDstReg[X] registers.

20.8.1.2 Single Transactions
Writing a 1 to the SglReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion
of the single transaction, both the SglIReqSrcReg/SglRegDstReg and ReqSrcReg/RegDstReg
bits are cleared by hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored
while a single transaction has been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/ReqDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
SglReqSrcReg/SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the SgIReqSr-
cReg/SglReqDstReqg register.

Software can poll the relevant channel bit in the SgIReqSrcReg/ SglReqDstReg and ReqSr-
cReg/ReqgDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled
and unmasked in order to generate an interrupt when the requested source or destination trans-
action has completed.

Note:  The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

20.8.2 Hardware Handshaking

There are 11 hardware handshaking interfaces between the DMACA and peripherals. Refer to
the module configuration chapter for the device-specific mapping of these interfaces.

Alm L 314

32072A-AVR32-03/09 I ©



20.8.2.1 External DMA Request Definition
When an external slave peripheral requires the DMACA to perform DMA transactions, it commu-
nicates its request by asserting the external nDMAREQX signal. This signal is resynchronized to
ensure a proper functionality (see “External DMA Request Timing” on page 315).

The external nDMAREQX signal should be asserted when the source threshold level is reached.
After resynchronization, the rising edge of dma_req starts the transfer. An external DMAACKXx
acknowledge signal is also provided to indicate when the DMA transfer has completed. The
peripheral should de-assert the DMA request signal when DMAACKX is asserted.

The external nDMAREQXx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

For a source FIFO, an active edge should be triggered on nDMAREQXx when the source FIFO
exceeds a watermark level. For a destination FIFO, an active edge should be triggered on
nDMAREQx when the destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

Figure 20-6. External DMA Request Timing

o JUUUUUULUUDUU DUy UL oyl

DMA Transaction

nDMAREQx _| I ,_\

DMA Transfers

<‘ { DMA Transfers »

-

dma_ack

20.9 DMACA Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the SARXx/DARX register in the DMACA is reprogrammed using either of the fol-
lowing methods:

*Block chaining using linked lists

*Auto-reloading

«Contiguous address between blocks
On successive blocks of a multi-block transfer, the CTLx register in the DMACA is re-pro-
grammed using either of the following methods:

*Block chaining using linked lists

<Auto-reloading
When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the LLPx register in the DMACA is re-programmed using the following method:

*Block chaining using linked lists

Alm L 315

32072A-AVR32-03/09 I ©




A block descriptor (LLI) consists of following registers, SARx, DARX, LLPx, CTL. These regis-
ters, along with the CFGx register, are used by the DMACA to set up and describe the block
transfer.

20.9.1 Multi-block Transfers

209.11 Block Chaining Using Linked Lists

In this case, the DMACA re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

DMACA block chaining is supported by using a Linked List Pointer register (LLPx) that stores the
address in memory of the next linked list item. Each LLI (block descriptor) contains the corre-
sponding block descriptor (SARX, DARX, LLPx, CTLX).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The SARX, DARX, LLPx and CTLx registers are fetched from system memory on an LLI update.
The updated contents of the CTLX register are written back to memory on block completion. Fig-
ure 20-7 on page 316 shows how to use chained linked lists in memory to define multi-block
transfers using block chaining.

The Linked List multi-block transfers is initiated by programming LLPx with LLPx(0) (LLI(0) base
address) and CTLx with CTLx.LLP_S_EN and CTLx.LLP_D_EN.

Figure 20-7. Multi-block Transfer Using Linked Lists

System Memory

LLI(0) LLI(L)
CTL[63..32] CTLX[63..32]
CTLX[31..0] CTLX[31..0]
LLPx(1) LLPx(2) ]
DARX DARX
— > sARx SARX > LLPx(2)
LLPX(0) LLPx(1)

32072A-AVR32-03/09

Alm L 316

Y 5



Table 20-1. Programming of Transfer Types and Channel Register Update Method (DMACA State Machine Table)
RELOAD RELOAD_ | CTLx,
LLP. LLP_S_EN | _SR LLP_D_EN | DS LLPx SARX DARX
Transfer Type LOC ( ( ( ( Update Update Update Write
=0 CTLx) CFGXx) CTLXx) CFGx) Method Method Method | Back
1) Single Block or None. user None
last transfer of Yes 0 0 0 0 re ro’ rams None (single) (single) No
multi-Block prog g
2) Al.no Reload CTLX,LLPx are
multi-block transfer . Auto-
. : Yes 0 0 0 1 reloaded from Contiguous No
with contiguous initial values Reload
SAR ’
?r;w)u/;\tttl;)loiiltcizgsfer CTLX,LLPx are Con-
. - Yes 0 1 0 0 reloaded from Auto-Reload - No
with contiguous initial values tiguous
DAR ’
CTLXx,LLPx are
4) Al.Jto Reload Yes 0 1 0 1 reloaded from Auto-Reload Auto- No
multi-block transfer S Reload
initial values.
5) Single Block or None. user None
last transfer of No 0 0 0 0 re ro’ rams None (single) (single) Yes
multi-block prog 9
6) Linked List CTLX,LLPx
multi-block transfer loaded from . Linked
with contiguous No 0 0 L 0 next Linked List Contiguous List Yes
SAR item
7) Linked List CTLX,LLPx
multi-block transfer loaded from Linked
with auto-reload No 0 ! 1 0 next Linked List Auto-Reload List Yes
SAR item
8) Linked List CTLx,LLPx
m_uln-blogk transfer No 1 0 0 0 Ioadec_l from _ Linked List Qon- Yes
with contiguous next Linked List tiguous
DAR item
9) Linked List CTLX,LLPx
multi-block transfer loaded from . . Auto-
with auto-reload No L 0 0 ! next Linked List Linked List Reload Yes
DAR item
CTLX,LLPx
10) Linked List loaded from . . Linked
multi-block transfer No L 0 L 0 next Linked List Linked List List Yes
item

20.9.1.2

Auto-reloading of Channel Registers
During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 20-1 on page 317, some or all of the SARXx, DARx and CTLx channel registers are
reloaded from their initial value at the start of a block transfer.

20.9.1.3 Contiguous Address Between Blocks
In this case, the address between successive blocks is selected to be a continuation from the

end of the previous block. Enabling the source or destination address to be contiguous between

Alm L 317

Y 5

32072A-AVR32-03/09



blocks is a function of CTLx.LLP_S_EN, CFGx.RELOAD_SR, CTLx.LLP_D_EN, and
CFGx.RELOAD_DS registers (see Figure 20-1 on page 307).

Note:  Both SARx and DARXx updates cannot be selected to be contiguous. If this functionality is
required, the size of the Block Transfer (CTLXx.BLOCK_TS) must be increased. If this is at the max-
imum value, use Row 10 of Table 20-1 on page 317 and setup the LLI.SARx address of the
block descriptor to be equal to the end SARx address of the previous block. Similarly, setup the
LLI.DARXx address of the block descriptor to be equal to the end DARx address of the previous
block.

209.14 Suspension of Transfers Between Blocks
At the end of every block transfer, an end of block interrupt is asserted if:

einterrupts are enabled, CTLx.INT_EN =1
the channel block interrupt is unmasked, MaskBlock[n] = 0, where n is the channel number.
Note:  The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 20-1 on page 317, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMACA automatically proceeds to block N + 1.

Forrows 2, 3, 4, 7, and 9 of Table 20-1 on page 317 (SARx and/or DARX auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted
if the end of block interrupt is enabled and unmasked.

The DMACA does not proceed to the next block transfer until a write to the block interrupt clear
register, ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

Forrows 2, 3, 4, 7, and 9 of Table 20-1 on page 317 (SARx and/or DARX auto-reloaded between
block transfers), the DMA transfer does not stall if either:

einterrupts are disabled, CTLx.INT_EN =0, or
the channel block interrupt is masked, MaskBlock[n] = 1, where n is the channel number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the CFGx.RELOAD_SR and/or CFGx.RELOAD_DS bits
before completion of the final block. The reload bits CFGXx.RELOAD_SR and/or
CFGx.RELOAD_DS should be cleared in the ‘end of block ISR’ for the next-to-last block
transfer.

20.9.2 Ending Multi-block Transfers
All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 20-1 on page 317.
At the end of every block transfer, the DMACA samples the row number, and if the DMACA is in
Row 1 or Row 5 state, then the previous block transferred was the last block and the DMA trans-
fer is terminated.

Note:  Row 1 and Row 5 are used for single block transfers or terminating multiblock transfers. Ending in
Row 5 state enables status fetch for the last block. Ending in Row 1 state disables status fetch for
the last block.

For rows 2,3 and 4 of Table 20-1 on page 317, (LLPx = 0 and CFGx.RELOAD_SR and/or

CFGXx.RELOAD_DS is set), multi-block DMA transfers continue until both the

CFGx.RELOAD_SR and CFGx.RELOAD_DS registers are cleared by software. They should be

Alm L 318

32072A-AVR32-03/09 I ©




20.10 Programming

programmed to zero in the end of block interrupt service routine that services the next-to-last
block transfer. This puts the DMACA into Row 1 state.

For rows 6, 8, and 10 (both CFGXx.RELOAD_SR and CFGx.RELOAD_DS cleared) the user must
setup the last block descriptor in memory such that both LLI.CTLx.LLP_S_EN and
LLI.CTLX.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block
transfer should clear the CFGX.RELOAD_SR and CFGx.RELOAD_DS reload bits. The last
block descriptor in memory should be set up so that both the LLI.CTLx.LLP_S EN and
LLI.CTLX.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

Note:  The only allowed transitions between the rows of Table 20-1 on page 317are from any row into
row 1 or row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer. All other transitions between rows are not allowed. Software must ensure that illegal tran-
sitions between rows do not occur between blocks of a multi-block transfer. For example, if block N
is in row 10 then the only allowed rows for block N + 1 are rows 10, 5 or 1.

a Channel

Three registers, the LLPx, the CTLx and CFGXx, need to be programmed to set up whether single
or multi-block transfers take place, and which type of multi-block transfer is used. The different
transfer types are shown in Table 20-1 on page 317.

The “Update Method” column indicates where the values of SARx, DARX, CTLx, and LLPx are
obtained for the next block transfer when multi-block DMACA transfers are enabled.

Note: In Table 20-1 on page 317, all other combinations of LLPx.LOC =0, CTLx.LLP_S_EN,
CFGx.RELOAD_SR, CTLx.LLP_D_EN, and CFGx.RELOAD_DS are illegal, and causes indeter-
minate or erroneous behavior.

20.10.1 Programming Examples

20.10.1.1  Single-block Transfer (Row 1)

32072A-AVR32-03/09

Row 5 in Table 20-1 on page 317 is also a single block transfer.

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

3. Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

¢. Program CTLx and CFGx according to Row 1 as shown in Table 20-1 on page 317.
Program the LLPx register with ‘0’

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:

—i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

Alm L 319

Y 5



—ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.
e. Write the channel configuration information into the CFGx register for channel x.

—i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

—ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writing

a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMA transactions to transfer the block of
data (assuming non-memory peripherals). The DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete.

20.10.1.2 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of Linked List Iltems (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLX register location of the block descriptor for
each LLI in memory (see Figure 20-7 on page 316) for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:
—i. Transfer width for the source in the SRC_TR_WIDTH field.
—ii. Transfer width for the destination in the DST_TR_WIDTH field.
—iii. Source master layer in the SMS field where source resides.
—iv. Destination master layer in the DMS field where destination resides.
—-Vv. Incrementing/decrementing or fixed address for source in SINC field.
—vi. Incrementing/decrementing or fixed address for destination DINC field.
3. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires pro-

Alm L 320

32072A-AVR32-03/09 I ©




gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the
last) are set as shown in Row 10 of Table 20-1 on page 317. The LLI.CTLx register of
the last Linked List Item must be set as described in Row 1 or Row 5 of Table 20-1 on
page 317. Figure 20-9 on page 323 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the
last) are non-zero and point to the base address of the next Linked List Item.

6. Make sure that the LLI.SARX/LLI.DARX register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

7. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory are cleared.

8. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

9. Program the CTLx, CFGxX registers according to Row 10 as shown in Table 20-1 on page
317.

10.Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

11.Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed.

12.The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note:  The LLL.SARX, LLI. DARX, LLI.LLPx and LLI.CTLx registers are fetched. The DMACA automati-
cally reprograms the SARx, DARX, LLPx and CTLx channel registers from the LLPx(0).
13.Source and destination request single and burst DMA transactions to transfer the block
of data (assuming non-memory peripheral). The DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

Note: ~ Table 20-1 on page 317

14.The DMACA does not wait for the block interrupt to be cleared, but continues fetching
the next LLI from the memory location pointed to by current LLPx register and automat-
ically reprograms the SARx, DARX, LLPx and CTLx channel registers. The DMA
transfer continues until the DMACA determines that the CTLx and LLPx registers at the
end of a block transfer match that described in Row 1 or Row 5 of Table 20-1 on page
317. The DMACA then knows that the previous block transferred was the last block in
the DMA transfer. The DMA transfer might look like that shown in Figure 20-8 on page
322.

Alm L 321

32072A-AVR32-03/09 I ©



Figure 20-8. Multi-Block with Linked List Address for Source and Destination

Address of A_ddrgss of
Source Layer Destination Layer

Block 2 Block 2

SAR(2) — DAR(2) —>
Block 1 Block 1

SAR(1) — DAR(1) —>
Block O Block O

SAR(0) —» DAR(0) ——

Source Blocks Destination Blocks

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as shown in
Figure 20-9 on page 323.

A|III L 322

32072A-AVR32-03/09 I ©



Figure 20-9. Multi-Block with Linked Address for Source and Destination Blocks are

Contiguous
Address of Address of
Source Layer Destination Layer
Block 2
/ «~— DAR(3)
Block 2 Block 2
SAR(3) —> / <« DAR(2)
Block 2 Block 1
SAR(2) —— / <« DAR(1)
Block 1 Block 0O
SAR(1) —— / . DAR()
Block 0
SAR(0) — »
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 20-11 on page 326.

Alm L 323

32072A-AVR32-03/09 I ©



Figure 20-10. DMA Transfer Flow for Source and Destination Linked List Address

Channel enabled by
software

!

LLI Fetch D

v

Hardware reprograms
SARX, DARX, CTLX, LLPx

v

DMAC block transfer

!

Source/destination
status fetch

Block Complete interrupt > l
generated here

Is DMAC in
Rowl of
MAC State Machine Table?

no

DMAC transfer Complete
interrupt generated here

yes

Channel Disabled by
hardware

20.10.1.3 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)
1. Read the Channel Enable register to choose an available (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

3. Program the following channel registers:

AIMEL 324

32072A-AVR32-03/09 I ©



a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 4 as shown in Table 20-1 on page 317.
Program the LLPx register with ‘0’.
d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:
—i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

—ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SR and CFGX.RELOAD_DS are
enabled.

—i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

—ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

6. When the block transfer has completed, the DMACA reloads the SARx, DARx and CTLXx
registers. Hardware sets the Block Complete interrupt. The DMACA then samples the
row number as shown in Table 20-1 on page 317. If the DMACA is in Row 1, then the
DMA transfer has completed. Hardware sets the transfer complete interrupt and dis-
ables the channel. So you can either respond to the Block Complete or Transfer
Complete interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is dis-
abled, to detect when the transfer is complete. If the DMACA is not in Row 1, the next
step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)

Alm L 325

32072A-AVR32-03/09 I ©




should clear the reload bits in the CFGX.RELOAD_SR and CFGx.RELOAD_DS
registers. This put the DMACA into Row 1 as shown in Table 20-1 on page 317. If
the next block is not the last block in the DMA transfer, then the reload bits should
remain enabled to keep the DMACA in Row 4.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number), then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers to put the
DMACA into ROW 1 of Table 20-1 on page 317 before the last block of the DMA
transfer has completed. The transfer is similar to that shown in Figure 20-11 on
page 326. The DMA transfer flow is shown in Figure 20-12 on page 327.

Figure 20-11. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of Address of
Source Layer Destination Layer

Block0

Blockl
BIockZ

SAR —»

<+— DAR

BIockN

Source Blocks Destination Blocks

A mE|,® 326

32072A-AVR32-03/09



20.10.1.4

32072A-AVR32-03/09

Figure 20-12. DMA Transfer Flow for Source and Destination Address Auto-reloaded

Channel Enabled by
software

:

Block Transfer K=

’

Reload SARx, DARx, CTLx

Block Complete interrupt

_
generated here i

DMAC transfer Complete
interrupt generated here yes

Channel Disabled by
hardware

Is DMAC in Row1 of
DMAC State Machine Table?

CTLX.INT_EN=1
&&
MASKBLOCK[x]=1?

Stall until block complete
interrupt cleared by software

Multi-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row7)
1. Read the Channel Enable register to choose a free (disabled) channel.
2. Set up the chain of linked list items (otherwise known as block descriptors) in memory.

Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory for channel x. For example, in the register you can program the
following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control peripheral by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

—i. Transfer width for the source in the SRC_TR_WIDTH field.

—ii. Transfer width for the destination in the DST_TR_WIDTH field.

—iii. Source master layer in the SMS field where source resides.

—iv. Destination master layer in the DMS field where destination resides.
—v. Incrementing/decrementing or fixed address for source in SINC field.
—vi. Incrementing/decrementing or fixed address for destination DINC field.

ATMEL

Y 5

327



3. Write the starting source address in the SARX register for channel x.

Note:  The values in the LLI.SARX register locations of each of the Linked List Items (LLIs) setup up in
memory, although fetched during a LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bhits, respectively.

5. Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last) are
set as shown in Row 7 of Table 20-1 on page 317 while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 20-1 on page
317. Figure 20-7 on page 316 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Item.

7. Make sure that the LLI.DARX register location of all LLIs in memory point to the start des-
tination block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLXx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

10.Program the CTLx, CFGx registers according to Row 7 as shown in Table 20-1 on page
317.

11.Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12.Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.

13.The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note:  The LLI.SARX, LLI.DARX, LLI. LLPx and LLI.CTLx registers are fetched. The LLI.SARX register
although fetched is not used.
14.Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). DMACA acknowledges at the com-
pletion of every transaction (burst and single) in the block and carry out the block
transfer.

15.Table 20-1 on page 317The DMACA reloads the SARX register from the initial value.
Hardware sets the block complete interrupt. The DMACA samples the row number as
shown in Table 20-1 on page 317. If the DMACA is in Row 1 or 5, then the DMA trans-
fer has completed. Hardware sets the transfer complete interrupt and disables the
channel. You can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete. If the DMACA is not in Row 1 or 5 as shown in
Table 20-1 on page 317 the following steps are performed.

16.The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where x is the channel number) hardware sets the

Alm L 328

32072A-AVR32-03/09 I ©




block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the CFGx.RELOAD_SR source reload bit. This puts the DMACA into
Row1 as shown in Table 20-1 on page 317. If the next block is not the last block in
the DMA transfer, then the source reload bit should remain enabled to keep the
DMACA in Row 7 as shown in Table 20-1 on page 317.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case, software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of Table 20-1
on page 317 before the last block of the DMA transfer has completed.

17.The DMACA fetches the next LLI from memory location pointed to by the current LLPx
register, and automatically reprograms the DARXx, CTLx and LLPx channel registers.
Note that the SARX is not re-programmed as the reloaded value is used for the next
DMA block transfer. If the next block is the last block of the DMA transfer then the CTLx
and LLPx registers just fetched from the LLI should match Row 1 or Row 5 of Table 20-
1 on page 317. The DMA transfer might look like that shown in Figure 20-13 on page
329.

Figure 20-13. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List

Address of A_ddrgss of
Source Layer Destination Layer

BlockOQ

DAR(0)_,

SAR —

DAR(2)_,

BlockN
DAR(N)_’

Source Blocks Destination Blocks

Destination Address

The DMA Transfer flow is shown in Figure 20-14 on page 330.

Alm L 329

32072A-AVR32-03/09 I ©



Figure 20-14. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destina-
tion Address

Channel Enabled by
software

|

LLI Fetch

!

Hardware reprograms
DARX, CTLX, LLPx

|

DMAC block transfer

|

Source/destination status fetch

|

Reload SARX

Block Complete interrupt —_—
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

DMAC Transfer Complete yes

interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

AIMEL 330

32072A-AVR32-03/09 I ©



20.10.1.5 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing a
‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARX register for channel x.

b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 3 as shown in Table 20-1 on page 317.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in this register, you can program the following:

—i. Set up the transfer type (memory or non-memory peripheral for source and

destination) and flow control device by programming the TT_FC of the CTLx register.

—ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.

—i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests

for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

—ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA channel has been programmed, enable the channel by writing a ‘1’ to
the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

6. When the block transfer has completed, the DMACA reloads the SARX register. The
DARX register remains unchanged. Hardware sets the block complete interrupt. The
DMACA then samples the row number as shown in Table 20-1 on page 317. If the
DMACA is in Row 1, then the DMA transfer has completed. Hardware sets the transfer
complete interrupt and disables the channel. So you can either respond to the Block
Complete or Transfer Complete interrupts, or poll for the Channel Enable (ChEn-

Alm L 331

32072A-AVR32-03/09 I ©




Reg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete.
If the DMACA is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLX.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where X is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the source reload bit, CFGx.RELOAD_SR. This puts the DMACA into
Row1 as shown in Table 20-1 on page 317. If the next block is not the last block in
the DMA transfer then the source reload bit should remain enabled to keep the
DMACA in Row3 as shown in Table 20-1 on page 317.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into ROW 1 of Table 20-1
on page 317 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 20-15 on page 332.

The DMA Transfer flow is shown in Figure 20-16 on page 333.

Figure 20-15. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Desti-
nation Address

Address of
Destination Layer

Address of
Source Layer

Block2
— DAR(2)

Blockl
«— DAR(1)

Block0

SAR
’ DAR(0)
Source Blocks Destination Blocks

Alm L 332

32072A-AVR32-03/09 I ©



Figure 20-16. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination
Address

Channel Enabled by
software

l

Block Transfer «—

l

Reload SARX, CTLx

Block Complete interrupt EE— l
generated here

DMAC Transfer Complete
interrupt generated here yes

L

Is DMAC in Rowl of
DMAC State Machine Table?

Channel Disabled by
hardware

CTLX.INT_EN=1
&&
MASKBLOCK][x]=1?

l yes

Stall until Block Complete
interrupt cleared by software

20.10.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI. CTLx register
location of the block descriptor for each LLI in memory for channel x. For example, in
the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:
—i. Transfer width for the source in the SRC_TR_WIDTH field.

—ii. Transfer width for the destination in the DST_TR_WIDTH field.
—iii. Source master layer in the SMS field where source resides.
—iv. Destination master layer in the DMS field where destination resides.

AIMEL 333

Y 5

32072A-AVR32-03/09



—Vv. Incrementing/decrementing or fixed address for source in SINC field.
—vi. Incrementing/decrementing or fixed address for destination DINC field.

3. Write the starting destination address in the DARX register for channel x.

Note:  The values in the LLI.DARX register location of each Linked List Item (LLI) in memory, although
fetched during an LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 20-1 on page 317, while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 20-1 on page
317. Figure 20-7 on page 316 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Iltem.

7. Make sure that the LLI.SARX register location of all LLIs in memory point to the start
source block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLXx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing a
‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

10.Program the CTLx, CFGx registers according to Row 8 as shown in Table 20-1 on page
317

11.Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12.Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.

13.The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note:  The LLL.SARX, LLI.DARX, LLI.LLPx and LLI.CTLx registers are fetched. The LLI.DARX register
location of the LLI although fetched is not used. The DARX register in the DMACA remains
unchanged.

14.Source and destination requests single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carry out the block
transfer.

Note:
15.The DMACA does not wait for the block interrupt to be cleared, but continues and
fetches the next LLI from the memory location pointed to by current LLPx register and
automatically reprograms the SARx, CTLx and LLPx channel registers. The DARX reg-
ister is left unchanged. The DMA transfer continues until the DMACA samples the CTLx
and LLPx registers at the end of a block transfer match that described in Row 1 or Row

Alm L 334

32072A-AVR32-03/09 I ©




32072A-AVR32-03/09

5 of Table 20-1 on page 317. The DMACA then knows that the previous block trans-
ferred was the last block in the DMA transfer.

The DMACA transfer might look like that shown in Figure 20-17 on page 335 Note that the des-
tination address is decrementing.

Figure 20-17. DMA Transfer with Linked List Source Address and Contiguous Destination

Address
Address of Address of
Source Layer Destination Layer
Block 2
SAR(2) —> \ Block 2
< DAR(2)
Block 1 > | Block 1
SAR(1) — <«— DAR(1)
/ Block 0
Block 0 < DAR(0)
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 20-19 on page 336.

Figure 20-18.

Alm L 335

Y 5



Figure 20-19. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address

Channel Enabled by
software

LLI Fetch

A

Hardware reprograms
SARX, CTLX, LLPx

DMAC block transfer

Source/destination
status fetch

Block Complete interrupt ——» l
generated here

Is DMAC in
Row 1 of Table 4 ?

no

DMAC Transfer Complete
interrupt generated here

Channel Disabled by
hardware

20.11 Disabling a Channel Prior to Transfer Completion
Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register
(CFGX) register.

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can
set the CFGx.CH_SUSP bit to tell the DMACA to halt all transfers from the source
peripheral. Therefore, the channel FIFO receives no new data.

2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel FIFO

is empty.
Alm L 336

32072A-AVR32-03/09 I ©




3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is
empty.
When CTLx.SRC_TR_WIDTH is less than CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit
is high, the CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single
word of CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel
FIFO but not enough to form a single transfer of CTLx.DST_TR_WIDTH width. In this configura-
tion, once the channel is disabled, the remaining data in the channel FIFO are not transferred to
the destination peripheral. It is permitted to remove the channel from the suspension state by
writing a ‘0’ to the CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note:  If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

20.11.1 Abnormal Transfer Termination

32072A-AVR32-03/09

A DMACA DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
ChEnReg.CH_EN bit is cleared over the HSB slave interface. Consider this as a request to dis-
able the channel. The ChEnReg.CH_EN must be polled and then it must be confirmed that the
channel is disabled by reading back 0. A case where the channel is not be disabled after a chan-
nel disable request is where either the source or destination has received a split or retry
response. The DMACA must keep re-attempting the transfer to the system HADDR that origi-
nally received the split or retry response until an OKAY response is returned. To do otherwise is
an System Bus protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMACA
Configuration Register (DmaCfgReg[0]). Again, this does not mean that all channels are dis-
abled immediately after the DmaCfgReg|0] is cleared over the HSB slave interface. Consider
this as a request to disable all channels. The ChEnReg must be polled and then it must be con-
firmed that all channels are disabled by reading back ‘0'.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

AIMEL 337

Y 5



20.12 User Interface

Table 20-2. DMA Controller Memory Map
Offset Register Register Name Access Reset Value
0x000 Channel 0 Source Address Register SARO Read/Write 0x00000000
0x008 Channel 0 Destination Address Register DARO Read/Write 0x00000000
0x010 Channel 0 Linked List Pointer Register LLPO Read/Write 0x00000000
0x018 Channel 0 Control Register Low CTLOL Read/Write 0x00304801
0x01C Channel 0 Control Register High CTLOH Read/Write 0x00000002
0x040 Channel 0 Configuration Register Low CFGOL Read/Write 0x00000c00
0x044 Channel 0 Configuration Register High CFGOH Read/Write 0x00000004
0x048 Channel 0 Source Gather Register SGRO Read/Write 0x00000000
0x050 Channel 0 Destination Scatter Register DSRO Read/Write 0x00000000
0x058 Channel 1 Source Address Register SAR1 Read/Write 0x00000000
0x060 Channel 1 Destination Address Register DAR1 Read/Write 0x00000000
0x068 Channel 1 Linked List Pointer Register LLP1 Read/Write 0x00000000
0x070 Channel 1 Control Register Low CTL1L Read/Write 0x00304801
0x074 Channel 1 Control Register High CTL1H Read/Write 0x00000002
0x098 Channel 1 Configuration Register Low CFG1L Read/Write 0x00000c20
0x09C Channel 1 Configuration Register High CFG1H Read/Write 0x00000004
0x0AO0 Channel 1Source Gather Register SGR1 Read/Write 0x00000000
O0x0A8 Channel 1 Destination Scatter Register DSR1 Read/Write 0x00000000
0x0BO Channel 2 Source Address Register SAR2 Read/Write 0x00000000
0x0B8 Channel 2 Destination Address Register DAR2 Read/Write 0x00000000
0x0CO0 Channel 2 Linked List Pointer Register LLP2 Read/Write 0x00000000
0x0C8 Channel 2 Control Register Low CTL2L Read/Write 0x00304801
0oxoccC Channel 2 Control Register High CTL2H Read/Write 0x00000002
O0x0FO0 Channel 2 Configuration Register Low CFG2L Read/Write 0x00000c40
Ox0F4 Channel 2 Configuration Register High CFG2H Read/Write 0x00000004
OxOF8 Channel 2 Source Gather Register SGR2 Read/Write 0x00000000
0x100 Channel 2 Destination Scatter Register DSR2 Read/Write 0x00000000
0x108 Channel 3 Source Address Register SAR3 Read/Write 0x00000000
0x110 Channel 3 Destination Address Register DARS3 Read/Write 0x00000000
0x118 Channel 3 Linked List Pointer Register LLP3 Read/Write 0x00000000
0x120 Channel 3 Control Register Low CTL3L Read/Write 0x00304801
0x124 Channel 3 Control Register High CTL3H Read/Write 0x00000002
0x148 Channel 3 Configuration Register Low CFG3L Read/Write 0x00000c60
Ox14c Channel 3 Configuration Register High CFG3H Read/Write 0x00000004
0x150 Channel 3 Source Gather Register SGR3 Read/Write 0x00000000
AIMEL 338

32072A-AVR32-03/09



Table 20-2. DMA Controller Memory Map (Continued)
Offset Register Register Name Access Reset Value
0x158 Channel 3Destination Scatter Register DSR3 Read/Write 0x00000000
0x2C0 Raw Status for IntTfr Interrupt RawTfr Read-only 0x00000000
0x2C8 Raw Status for IntBlock Interrupt RawBlock Read-only 0x00000000
0x2D0 Raw Status for IntSrcTran Interrupt RawSrcTran Read-only 0x00000000
0x2D8 Raw Status for IntDstTran Interrupt RawDstTran Read-only 0x00000000
O0x2EO0 Raw Status for IntErr Interrupt RawErr Read-only 0x00000000
Ox2E8 Status for IntTfr Interrupt StatusTfr Read-only 0x00000000
0x2F0 Status for IntBlock Interrupt StatusBlock Read-only 0x00000000
Ox2F8 Status for IntSrcTran Interrupt StatusSrcTran Read-only 0x00000000
0x300 Status for IntDstTran Interrupt StatusDstTran Read-only 0x00000000
0x308 Status for IntErr Interrupt StatusErr Read-only 0x00000000
0x310 Mask for IntTfr Interrupt MaskTfr Read/Write 0x00000000
0x318 Mask for IntBlock Interrupt MaskBlock Read/Write 0x00000000
0x320 Mask for IntSrcTran Interrupt MaskSrcTran Read/Write 0x00000000
0x328 Mask for IntDstTran Interrupt MaskDstTran Read/Write 0x00000000
0x330 Mask for IntErr Interrupt MaskErr Read/Write 0x00000000
0x338 Clear for IntTfr Interrupt ClearTfr Write-only 0x00000000
0x340 Clear for IntBlock Interrupt ClearBlock Write-only 0x00000000
0x348 Clear for IntSrcTran Interrupt ClearSrcTran Write-only 0x00000000
0x350 Clear for IntDstTran Interrupt ClearDstTran Write-only 0x00000000
0x358 Clear for IntErr Interrupt ClearErr Write-only 0x00000000
0x360 Status for each interrupt type Statusint Read-only 0x00000000
0x368 Source Software Transaction Request Register ReqgSrcReg Read/Write 0x00000000
0x370 Destination Software Transaction Request Register RegDstReg Read/Write 0x00000000
0x378 Single Source Transaction Request Register SglReqSrcReg Read/Write 0x00000000
0x380 Single Destination Transaction Request Register SglReqgDstReg Read/Write 0x00000000
0x388 Last Source Transaction Request Register LstSrcReg Read/Write 0x00000000
0x390 Last Destination Transaction Request Register LstDstReg Read/Write 0x00000000
0x398 DMA Co