

QUARTZ CRYSTAL OSCILLATOR

GENERAL DESCRIPTION

The NJU6373 series is a C-MOS quartz crystal oscillator which consists of an oscillation amplifier, 3-stage divider and 3-state output buffer.

This series are classed into three groups A to D, H to L and Q to T according to their oscillation frequency range mentioned in the line-up table.

The oscillation amplifier incorporates feed-back resistance and oscillation capacitors(Cg, Cd), therefore, it requires no external component except guartz crystal.

The 3-stage divider generates f_0 , $f_0/2$, $f_0/4$ and $f_0/8$ and only one frequency selected by internal circuits is output.

The 3-state output buffer is TTL compatible and capable of 10 TTL driving.

The NJU6373 series is suitable for the 3rd Over Tone and its pad location is the same as NJU6322 series.

FEATURES

- Operating Voltage. -- 4.0~6.0V
- Maximum Oscillation Frequency (See Line-Up Table)
- Low Operating Current
- High Fan-out -- TTL 10
- 3-state Output Buffer
- Selected Frequency Output (mask option) Only one frequency out of fo, fo/2, fo/4 and fo/8 output
- Oscillation Capacitors Cg and Cd on-chip
- Oscillation and/or Output Stand-by Function
- Package Outline -- CHIP/EMP 8
- C-MOS Technology

LINE-UP TABLE

Туре №.	Recommended Osc. Freq.	Output Freq.	Cg,Cd
NJU6373A 6373B 6373C 6373D	From 20 to 35MHz	fo fo/2 fo/4 fo/8	28pF
NJU6373H 6373J 6373K 6373L	From 30 to 50MHz	fo fo/2 fo/4 fo/8	20pF
NJU6373Q 6373R 6373S 6373T	From 45 to 75MHz	fo fo/2 fo/4 fo/8	17pF

NJU6373XC

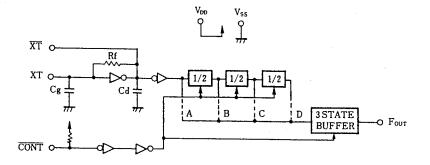
NJU6373XE

■ PIN CONFIGURATION/PAD LOCATION

CONT	1	(8) Vnn		8 D V DN	
ХТ	—		XTC 2	7 DNC	
XT Vss		5 Гонт	XTC 3	6 🗆 N С	
¥ 55		B F 007	Vss 🗖 4	5 Fou	т

COORDINATES

Unit:µm


No.	PAD	Х	Y
1	CONT	-408	248
2	XT	-408	81
3	XT	-408	86
4	Vss	-408	248
5	Fout	464	248
6	NC	-	248
7	NC	-	
8	Vdd	464	248

Chip Size : 1.29 X 0.8mm Chip Center : X=0µm,Y=0µm Chip Thickness : 400µm±30µm (Note) No. 6 and 7 terminals are only for package type information. There are no PAD on the chip.

·4-49

BLOCK DIAGRAM

TERMINAL DESCRIPTION

NO.	SYMBOL	F U N C T I O N			
1	CONT	3-State Output Control and Divider Reset CONT Four H Output either one frequency from fo, fo/2, fo/4 and fo/8 L Output High Impedance and Divider Reset			
2 3	XT XT	Quartz Crystal Connecting Terminals			
5	Four	Output either one frequency from f_0 , $f_0/2$, $f_0/4$ and $f_0/8$			
8	V _{DD}	+ 5V			
4	Vss	GND			

JRC

NJU6373 Series

ABSOLUTE MAXIMUM RATINGS

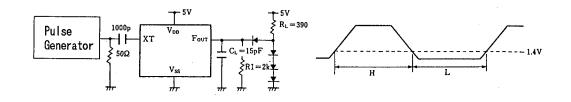
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	VDD	-0.5 ~ +7.0	V
Input Voltage	VIN	V_{ss} -0.5 ~ V_{DD} +0.5	V
Output Voltage	Vo	-0.5 ~ V _{DD} +0.5	٧
Input Current	או	±10	mA
Output Current	lo	± 25	mA
Power Dissipation (EMP)	P₀	200	m₩
Operating Temperature Range	Topr	-40 ~ + 85	Ĵ
Storage Temperature Range	Tstg	-55 ~ +125	Ĵ

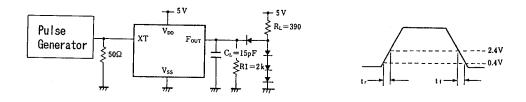
Note) Decoupling capacitor should be connected between V_{DD} and V_{SS} due to the stabilized operation for the circuit.

ELECTRICAL CHARACTERISTICS

(Ta=25℃, V_{DD}=5V)


PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Operating Voltage	VDD		4		6	v
	DD1	A,B,C,D fosc=24MHz, No Load			15	
Operating Current	DD2	H,J,K,L fosc=48MHz, No Load		<u>-</u>	25	mA
	DD3	Q,R,S,T fosc=48MHz, No Load			28	
Stand-by Current	lst	CONT,XT=Vss, No Load (Note)			1	μA
Input Voltage	VIH		3.5		5.0	v
	VIL		0		1.5	
Output Current	Іон	V _{он} =4.5V	4			mA
	lol	Vol=0.5V	16			
Input Current	IIN	CONT Terminal, CONT=Vss	125	250	500	μA
3-St Off-leakage Current	loz	CONT=Vss, Four=Vss or VDD			±0.1	μA
		A,B,C,D Version, fosc=24MHz		28		
Internal Capacitor	Cg,Cd	H,J,K,L Version, fosc=48MHz		20		рF
		Q,R,S,T Version, fosc=48MHz		17		
		A,B,C,D Version	35			MHz
Max. Oscillation Freq.	fmax	H,J,K,L Version	50			
		Q,R,S,T Version	75			
Output Signal Symmetry	SYM	$C_L=15_PF$, RL=390 Ω at 1.4V	45	50	55	_%
Output Signal Rise Time	tr	$C_L=15pF, R_L=390\Omega, 2.4V-0.4V$			6	ns
Output Signal Fall Time	t _f	$C_{L}=15pF, R_{L}=390\Omega, 2.4V-0.4V$			4	ns

Note) Excluding input current on CONT terminal.



(1) Output Signal Symmetry (C_L=15pF, R_L=390 Ω)

(2) Output Signal Rise/Fall Time (CL=15pF, RL=390Ω)

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.