September 1983 Revised January 2005 # MM74HC164 8-Bit Serial-in/Parallel-out Shift Register ### **General Description** The MM74HC164 utilizes advanced silicon-gate CMOS technology. It has the high noise immunity and low consumption of standard CMOS integrated circuits. It also offers speeds comparable to low power Schottky devices. This 8-bit shift register has gated serial inputs and CLEAR. Each register bit is a D-type master/slave flip-flop. Inputs A & B permit complete control over the incoming data. A LOW at either or both inputs inhibits entry of new data and resets the first flip-flop to the low level at the next clock pulse. A high level on one input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is HIGH or LOW, but only information meeting the setup and hold time requirements will be entered. Data is serially shifted in and out of the 8-bit register during the positive going transition of the clock pulse. Clear is independent of the clock and accomplished by a low level at the CLEAR input. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground. #### **Features** - Typical operating frequency: 50 MHz - Typical propagation delay: 19 ns (clock to Q) - Wide operating supply voltage range: 2V to 6V - Low input current: 1 µA maximum - Low quiescent supply current: 80 µA maximum (74HC Series) - Fanout of 10 LS-TTL loads ### **Ordering Code:** | Order Number | Package
Number | Package Description | | | |------------------|-------------------|--|--|--| | MM74HC164M | M14A | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow | | | | MM74HC164MX_NL | M14A | Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow | | | | MM74HC164MTC | MTC14 | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | | | MM74HC164MTCX_NL | MTC14 | Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | | | MM74HC164N | N14A | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide | | | Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B. # **Connection Diagram** ### **Top View** ### **Truth Table** | Inputs | | | | Outputs | | | | | |--------|----------|---|---|----------|----------|-----|----------------|--| | Clear | Clock | Α | В | Q_A | Q_B | ••• | Q _H | | | L | Х | Х | Χ | L | L | | L | | | Н | L | Χ | X | Q_{AO} | Q_{BO} | | Q_{HO} | | | Н | ↑ | Н | Н | Н | Q_{An} | | Q_{Gn} | | | Н | ↑ | L | Χ | L | Q_{An} | | Q_Gn | | | Н | ↑ | Χ | L | L | Q_{An} | | Q_{Gn} | | - H = HIGH Level (steady state), L = LOW Level (steady state) X = Irrelevant (any input, including transitions) T = Transition from LOW-to-HIGH level. - $Q_{AO},\ Q_{BO},\ Q_{HO}=\text{the level of }Q_{A},\ Q_{B},\ \text{or }Q_{H},\ \text{respectively, before the indi-}$ cated steady state input conditions were established. $Q_{An},\,Q_{Gn}=$ The level of Q_{A} or Q_{G} before the most recent \uparrow transition of the clock; indicated a one-bit shift. # **Logic Diagram** # **Absolute Maximum Ratings**(Note 1) (Note 2) (Soldering 10 seconds) Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) -1.5 to V_{CC} +1.5VDC Output Voltage (V_{OUT}) -0.5 to V_{CC} +0.5V Clamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) ±25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA Storage Temperature Range (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$ Power Dissipation (P_D) 600 mW (Note 3) S.O. Package only 500 mW Lead Temperature (T_L) # Recommended Operating Conditions | | Min | Max | Units | |---|-----|----------|-------| | Supply Voltage (V _{CC}) | 2 | 6 | V | | DC Input or Output Voltage | | | | | (V_{IN}, V_{OUT}) | 0 | V_{CC} | V | | Operating Temperature Range (T _A) | -40 | +85 | °C | | Input Rise or Fall Times | | | | | $(t_r, t_f) V_{CC} = 2.0V$ | | 1000 | ns | | $V_{CC} = 4.5V$ | | 500 | ns | | $V_{CC} = 6.0V$ | | 400 | ns | | | | | | Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C. # DC Electrical Characteristics (Note 4) 260°C | Symbol | Parameter | Conditions | V _{CC} | T _A = 25°C | | $T_A = -40 \text{ to } 85^{\circ}\text{C}$ | T _A = -55 to 125°C | Units | |-----------------|--------------------|--------------------------------|-----------------|-----------------------|-------------------|--|-------------------------------|--------| | Symbol | | Conditions | ▼CC | Тур | Guaranteed Limits | | | Ullits | | V _{IH} | Minimum HIGH Level | | 2.0V | | 1.5 | 1.5 | 1.5 | | | | Input Voltage | | 4.5V | | 3.15 | 3.15 | 3.15 | V | | | | | 6.0V | | 4.2 | 4.2 | 4.2 | | | V _{IL} | Maximum LOW Level | | 2.0V | | 0.5 | 0.5 | 0.5 | | | | Input Voltage | | 4.5V | | 1.35 | 1.35 | 1.35 | V | | | | | 6.0V | | 1.8 | 1.8 | 1.8 | | | V _{OH} | Minimum HIGH Level | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | Output Voltage | $ I_{OUT} \le 20 \ \mu A$ | 2.0V | 2.0 | 1.9 | 1.9 | 1.9 | | | | | | 4.5V | 4.5 | 4.4 | 4.4 | 4.4 | | | | | | 6.0V | 6.0 | 5.9 | 5.9 | 5.9 | V | | | | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | | $ I_{OUT} \le 4.0 \text{ mA}$ | 4.5V | 4.2 | 3.98 | 3.84 | 3.7 | | | | | $ I_{OUT} \le 5.2 \text{ mA}$ | 6.0V | 5.7 | 5.48 | 5.34 | 5.2 | | | V _{OL} | Maximum LOW Level | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | Output Voltage | $ I_{OUT} \le 20 \ \mu A$ | 2.0V | 0 | 0.1 | 0.1 | 0.1 | | | | | | 4.5V | 0 | 0.1 | 0.1 | 0.1 | | | | | | 6.0V | 0 | 0.1 | 0.1 | 0.1 | V | | | | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | | $ I_{OUT} \le 4.0 \text{ mA}$ | 4.5V | 0.2 | 0.26 | 0.33 | 0.4 | | | | | $ I_{OUT} \le 5.2 \text{ mA}$ | 6.0V | 0.2 | 0.26 | 0.33 | 0.4 | | | I _{IN} | Maximum Input | $V_{IN} = V_{CC}$ or GND | 6.0V | | ±0.1 | ±1.0 | ±1.0 | μΑ | | | Current | | | | | | | | | I _{CC} | Maximum Quiescent | $V_{IN} = V_{CC}$ or GND | 6.0V | | 8.0 | 80 | 160 | μΑ | | | Supply Current | $I_{OUT} = 0 \mu A$ | | | | | | | Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used. ### **AC Electrical Characteristics** $\label{eq:CC} \textit{V}_{CC} = 5 \textit{V}, \, \textit{T}_{A} = 25 ^{\circ} \textit{C}, \, \textit{C}_{L} = 15 \; p\textrm{F}, \, t_{r} = t_{f} = 6 \; \textrm{ns}$ | Symbol | Parameter | Conditions | Тур | Guaranteed
Limit | Units | |-------------------------------------|---|------------|-----|---------------------|-------| | f _{MAX} | Maximum Operating Frequency | | | 30 | MHz | | t _{PHL} , t _{PLH} | Maximum Propagation Delay Clock to Output | | 19 | 30 | ns | | t _{PHL} | Maximum Propagation Delay Clear to Output | | 23 | 35 | ns | | t _{REM} | Minimum Removal Time,
Clear to Clock | | -2 | 0 | ns | | t _S | Minimum Setup Time Data to Clock | | 12 | 20 | ns | | t _H | Minimum Hold Time
Clock to Data | | 1 | 5 | ns | | t _W | Minimum Pulse Width Clear or Clock | | 10 | 16 | ns | ## **AC Electrical Characteristics** $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns} \text{ (unless otherwise specified)}$ | Symbol | Parameter | Conditions | v _{cc} | T _A = 25°C | | $T_A = -40 \text{ to } 85^{\circ}\text{C}$ | $T_A = -55$ to 125°C | Units | |-------------------------------------|--|---------------|-----------------|-----------------------|-------------------|--|----------------------|--------| | Symbol | Parameter | | | Тур | Guaranteed Limits | | | Ullits | | f _{MAX} | Maximum Operating Frequency | | 2.0V | | 5 | 4 | 3 | | | | | | 4.5V | | 27 | 21 | 18 | MHz | | | | | 6.0V | | 31 | 24 | 20 | | | t _{PHL} , t _{PLH} | Maximum Propagation Delay | | 2.0V | 115 | 175 | 218 | 254 | | | | Clock to Output | | 4.5V | 13 | 35 | 44 | 51 | ns | | | | | 6.0V | 20 | 30 | 38 | 44 | | | t _{PHL} | Maximum Propagation Delay | | 2.0V | 140 | 205 | 256 | 297 | | | | Clear to Output | | 4.5V | 28 | 41 | 51 | 59 | ns | | | | | 6.0V | 24 | 35 | 44 | 51 | | | t _{REM} | Minimum Removal Time | | 2.0V | -7 | 0 | 0 | 0 | | | | Clear to Clock | | 4.5V | -3 | 0 | 0 | 0 | ns | | | | | 6.0V | -2 | 0 | 0 | 0 | | | t _S | Minimum Setup Time | | 2.0V | 25 | 100 | 125 | 150 | | | | Data to Clock | | 4.5V | 14 | 20 | 25 | 30 | ns | | | | | 6.0V | 12 | 17 | 21 | 25 | | | t _H | Minimum Hold Time | | 2.0V | -2 | 5 | 5 | 5 | | | | Clock to Data | | 4.5V | 0 | 5 | 5 | 5 | ns | | | | | 6.0V | 1 | 5 | 5 | 5 | | | t _W | Minimum Pulse Width | | 2.0V | 22 | 80 | 100 | 120 | | | | Clear or Clock | | 4.5V | 11 | 16 | 20 | 24 | ns | | | | | 6.0V | 10 | 14 | 18 | 20 | | | t _{THL} , t _{TLH} | Maximum Output | | 2.0V | | 75 | 95 | 110 | | | | Rise and Fall Time | | 4.5V | | 15 | 19 | 22 | ns | | | | | 6.0V | | 13 | 16 | 19 | | | t _r , t _f | Maximum Input | | 2.0V | | 1000 | 1000 | 1000 | | | | Rise and Fall Time | | 4.5V | | 500 | 500 | 500 | ns | | | | | 6.0V | | 400 | 400 | 400 | | | C _{PD} | Power Dissipation Capacitance (Note 5) | (per package) | 5.0V | 150 | | | | pF | | C _{IN} | Maximum Input Capacitance | | | 5 | 10 | 10 | 10 | pF | Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A # Physical Dimensions inches (millimeters) unless otherwise noted (Continued) LAND PATTERN RECOMMENDATION ### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB_ REF NOTE 6, DATED 7/93 - B. DIMENSIONS ARE IN MILLIMETERS - D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982 MTC14revD 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14 ### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. ### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com