A Wide Range of Basic Input Units for High Speed Input and Different Applications

- Receive ON/OFF signals from external devices into the PLC System to update I/O memory in the CPU Unit.
- New high-speed input models CJ1W-ID212 and CJ1W-ID233 are now available. These units can help to increase system throughput.

CJ1W-ID212

CJ1W-ID233

Features

- High-speed input models are available, meeting versatile applications.

ON Response Time: $15 \mu \mathrm{~s}$, OFF Response Time: $90 \mu \mathrm{~s}$

- Use 24-VDC, 100-VAC, and 200-VAC models to connect to devices with different types of outputs.
- The 24-VDC models can be connected to devices with either NPN or PNP outputs. There is no need to select the polarity. *1
- A digital filter in the Unit can be set from 0 to 32 ms to reduce the influence of external noise.
- Either a Fujitsu or MIL connector interface can be used. *2
- Several models of Terminal Block Conversion Units are available, making it easy to connect to external devices.
${ }^{*} 1$. The same polarity is used for the same common.
*2. For models with 32 or 64 inputs.

Ordering Information

International Standards

- The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.
- Contact your OMRON representative for further details and applicable conditions for these standards.

Input Units

Unit type	Product name	Specifications					$\begin{aligned} & \text { Current } \\ & \text { onsumption } \end{aligned}$ (A)		Model	Standards
		I/O points	Input voltage and current	Commons	External connection	No. of words allocated	5 V	24 V		
CJ1 Basic I/O Units	DC Input Units	8 inputs	12 to $24 \mathrm{VDC}, 10 \mathrm{~mA}$	Independent contacts	Removable terminal block	1 word	0.09	-	CJ1W-ID201	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		16 inputs	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	1 word	0.08	-	CJ1W-ID211	
		16 inputs (High speed)	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	1 word	0.13	-	CJ1W-ID212	N, L, CE
		32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	2 words	0.09	-	CJ1W-ID231	$\begin{aligned} & \text { UC1, N, L, } \\ & \mathrm{CE} \end{aligned}$
		32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	2 words	0.09	-	CJ1W-ID232	
		32 inputs (High speed)	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	2 words	0.20	-	CJ1W-ID233	N, L, CE
		64 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	4 words	0.09	-	CJ1W-ID261	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		64 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	4 words	0.09	-	CJ1W-ID262	
	AC Input Units	8 inputs	$\begin{aligned} & 200 \text { to } 24 \mathrm{VAC}, 10 \mathrm{~mA} \\ & (200 \mathrm{~V}, 50 \mathrm{~Hz}) \end{aligned}$	8 points, 1 common	Removable Terminal Block	1 words	0.08	-	CJ1W-IA201	
		16 inputs	$\begin{aligned} & 100 \text { to } 120 \mathrm{VAC}, 7 \mathrm{~mA} \\ & (100 \mathrm{~V}, 50 \mathrm{~Hz}) \end{aligned}$	16 points, 1 common	Removable Terminal Block	1 words	0.09	-	CJ1W-IA111	

Accessories

Connectors are not included for models with connectors. Either use one of the applicable connector listed below or use an applicable ConnectorTerminal Block Conversion Unit or I/O Relay Terminal. For details on wiring methods, refer to External Interface.

Applicable Connectors

Fujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks	Applicable Units	Model	Standards
40-pin Connectors	Soldered	FCN-361J040-AU Connector FCN-360C040-J2 Connector Cover	Fujitsu Connectors: CJ1W-ID231(32 inputs): 1 per Unit CJ1W-ID261 (64 inputs): 2 per Unit CJ1W-OD231 (32 outputs): 1 per Unit CJ1W-OD261 (64 outputs): 2 per Unit CJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit	C500-CE404	
	Crimped	FCN-363J040 Housing FCN-363J-AU Contactor FCN-360C040-J2 Connector Cover		C500-CE405	
	Pressure welded	FCN-367J040-AU/F		C500-CE403	
24-pin Connectors	Soldered	FCN-361J024-AU Connector FCN-360C024-J2 Connector Cover	Fujitsu Connectors: CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit	C500-CE241	
	Crimped	FCN-363J024 FCN-363J-AU Cousing FCN-360C024-J2 Connector Cover		C500-CE242	
	Pressure welded	FCN-367J024-AU/F		C500-CE243	

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks	Applicable Units	Model	Standards
40-pin Connectors	Pressure welded	FRC5-AO40-3TOS	MIL Connectors: CJ1W-ID232/233 (32 inputs): 1 per Unit CJ1W-OD232/233/234 (32 outputs): 1 per Unit CJ1W-ID262 (64 inputs): 2 per Unit CJ1W-OD262/263 (64 outputs): 2 per Unit CJ1W-MD263/563 (32 inputs, 32 outputs): 2 per Unit	XG4M-4030-T	-
20-pin Connectors	Pressure welded	FRC5-AO20-3TOS	MIL Connectors: CJ1W-MD232/233 (16 inputs, 16 outputs): 2 per Unit	XG4M-2030-T	

Applicable Connector-Terminal Block Conversion Units

Type	Series	I/O	Number of poles	Terminal ype	Size			Mounting		Common terminals	Bleeder resistance	Indicators	Model	Standards
					Depth (mm)	Height (mm)	Width (mm)	$\begin{gathered} \hline \text { DIN } \\ \text { Track } \end{gathered}$	Screws					
Slim	XW2D	I/O	20	M3	39	40	79	Yes	Yes	No	No	No	XW2D-20G6	-
			40				149						XW2D-40G6	
													XW2D-40C6	
		Inputs only									Built-in		XW2D-40G6-RF	
													XW2D-40G6-RM	
Through	XW2B	I/O	20	M3.5	45	45.3	112.5	Yes	Yes	No	No	No	XW2B-20G5	
				M3 (European type)			67.5						XW2B-20G4	
			40	M3.5			202.5						XW2B-40G5	
				M3 (European type)			135						XW2B-40G4	
With common terminals	XW2C	1/O	20	M3	39	40	149	Yes	Yes	Yes	No	No	XW2C-20G6-IO16	
		Inputs only	20	M3.5	50	38	160					Yes	XW2C-20G5-IN16	
With common terminals, 3-tier	XW2E	Inputs only, 3 tiers	20	M3.5	50	53	149	Yes	Yes	Yes	No	No	XW2E-20G5-IN16	
Screwless clamp terminals	XW2F	Inputs only	20	Clamp	50	40	95.5	Yes	Yes	Yes	No	No	XW2F-20G7-IN16	
		Outputs only	20	Clamp	50	40	95.5	Yes	Yes	Yes	No	No	XW2F-20G7-OUT16	
e-CON	XW2N	Inputs only	20	e-CON connector	50	40	95.5	Yes	Yes	Yes	No	No	XW2N-20G8-IN16	

Note: For the combination of Input Units with Connector-Terminal Block Conversion Units, refer to 2. Connecting Connector-Terminal Block Conversion Units.

Applicable I/O Relay Terminals

Type	Series		Specifications							Size (horizontal mounting)			Mounting		Model	Standards	
			Classification		Polarity	Number of points	Rated ON current at contacts	Operation indicators	Terminal blockfor power supply wiring	Horizontal (mm)	Vertical (mm)	Height (mm)	$\begin{gathered} \text { DIN } \\ \text { Track } \end{gathered}$	Screws			
Spacesaving	G70D	Vertical type G70D-V	Outputs	Relay outputs	NPN	$\begin{aligned} & 16 \\ & (\text { SPST- } \\ & \text { NO } \times 16 \text {) } \end{aligned}$	5A or 3A	Yes	Expandable	135	46	81	Yes	Yes	G70D-VSOC16	$\begin{aligned} & \mathrm{U}, \mathrm{C}, \\ & \mathrm{CE} \end{aligned}$	
				$\begin{array}{\|l} \hline \text { MOSFET } \\ \text { relay } \\ \text { outputs } \end{array}$			0.3A								G70D-VFOM16		
		Flat type G70D		Relay outputs	NPN	$\begin{aligned} & 8 \text { (SPST- } \\ & \text { NO } \times 8 \text {) } \end{aligned}$	5A	Yes	-	68	93	44	Yes	Yes	G70D-SOC08	-	
						$\begin{array}{\|l} \hline 16 \\ \text { (SPST- } \\ \text { NO } \times 16 \text {) } \end{array}$	3A			156	51	39			G70D-SOC16		
					PNP	16 (SPSTNO $\times 16$)	3A								G70D-SOC16-1		
				MOSFET relay outputs	NPN	$\begin{aligned} & 16 \\ & \text { (SPST- } \\ & \text { NO } \times 16 \text {) } \end{aligned}$	0.3A								G70D-FOM16		
					PNP										G70D-FOM16-1		
Highcapacity, spacesaving	G70R		Outputs	Relay outputs	NPN	$\begin{aligned} & 8 \text { (SPST- } \\ & \text { NO } \times 8 \text {) } \end{aligned}$	10A	Yes	-	136	93	55	Yes	Yes	G70R-SOC08	-	
Standard	G7TC		Inputs	AC inputs	NPN	16 (SPSTNO $\times 16$)	1A	Yes	-	182	85	68	Yes	-	G7TC-IA16	U, C	
			$\begin{aligned} & \hline D C \\ & \text { inputs } \end{aligned}$	G7TC-ID16													
			Outputs	Relay outputs	NPN	$\begin{aligned} & \hline 8 \text { (SPST- } \\ & \text { NO } \times 8 \text {) } \end{aligned}$	5A			102					G7TC-0C08		
			16 (SPST$\mathrm{NO} \times 16$)			182				G7TC-OC16							
			PNP		$\begin{aligned} & 16 \\ & (\text { SPST- } \\ & \text { NO } \times 16 \text {) } \end{aligned}$					G7TC-0C16-1					-		
Highcapacity socket	G70A (Socket only)			Outputs	Relay outputs	NPN	16 (SPDT \times 16 possible with G2R Relays)	10 A (Terminal block allowable current)	No	-	234	75	64	Yes	-	G70A-ZOC16-3 (Socket only) + Relay/SSR/ MOSFET Relay/ Timer	$\begin{aligned} & \mathrm{U}, \mathrm{C}, \\ & \mathrm{CE} \end{aligned}$
			PNP			G70A-ZOC16-4 (Socket only) + Relay/SSR/ MOSFET Relay/ Timer											

Note: For the combination of Input Units with I/O Relay Terminal and Connecting Cables, refer to 3. Connecting I/O Relay Terminals.

Mountable Racks

Model	NJ system		CJ system (CJ1, CJ2)		CP1H system	NSJ system	
	CPU Rack	Expansion Rack	CPU Rack	Expansion Backplane	CP1H PLC	NSJ Controller	Expansion Backplane
CJ1W-ID201	10 Units	10 Units (per Expansion Rack)	10 Units	10 Units (per Expansion Backplane)	Not supported	Not supported	10 Units (per Expansion Backplane)
CJ1W-ID211							
CJ1W-ID212							
CJ1W-ID231							
CJ1W-ID232							
CJ1W-ID233							
CJ1W-ID261							
CJ1W-ID262							
CJ1W-IA201							
CJ1W-IA111							

Specifications

CJ1W-ID201 DC Input Unit (12 to 24-VDC, 8 Points)

- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

- Polarity of the input power supply can be connected in either direction.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.
*1. The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response time are set to 0 ms due to internal element delays.
*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.
Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

CJ1W-ID211 DC Input Unit (24 VDC, 16 Points)

- Polarity of the input power supply can be connected in either direction.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.
*1. The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response time are set to 0 ms due to internal element delays.
*2. Terminal numbers A 0 to A 8 and B 0 to B 8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

CJ1W-ID212 DC Input Unit (24 VDC, 16 Points)

- Polarity of the input power supply can be connected in either direction.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.
*1. The ON response time will be $15 \mu \mathrm{~s}$ maximum and OFF response time will be $90 \mu \mathrm{~s}$ maximum even if the response time are set to 0 ms due to internal element delays.
*2. Terminal numbers A 0 to A 8 and B 0 to B 8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

CJ1W-ID231 DC Input Unit (24 VDC, 32 Points)

- The input power polarity can be connected in either direction.
- Be sure to wire both pins A9 and A18 (COM0), and set the same polarity for both pins.
- Be sure to wire both pins B9 and B18 (COM1), and set the same polarity for both pins.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

* The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
Note: Observe the following restrictions when connecting to a 2-wire sensor.
- Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
- Use a sensor with a minimum load current of 3 mA min.
- Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher

CJ1W-ID232 DC Input Unit (24 VDC, 32 Points)

- The input power polarity can be connected in either direction.
- Be sure to wire both pins 23 and 24 (COMO), and set the same polarity for both pins.
- Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

[^0]CJ1W-ID233 DC Input Unit (24 VDC, 32 Points)

- The input power polarity can be connected in either direction.
- Be sure to wire both pins 23 and 24 (COMO), and set the same polarity for both pins.
- Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

[^1]CJ1W-ID261 DC Input Unit (24 VDC, 64 Points)

CJ1W-ID262 DC Input Unit (24 VDC, 64 Points)

[^2]CJ1W-IA201 AC Input Unit (200 VAC, 8 Points)

CJ1W-IA111 AC Input Unit (100 VAC, 16 points)

*3. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Bit Allocations for Input Unit
8-point Input Unit

Allocated CIO word		Signal name (CJ/NJ)
CIO	Bit	
Wd m (Input)	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	06	IN6/Jxx_Ch1_In06
	07	IN7/Jxx_Ch1_In07
	08	-
	09	-
	$:$	$:$
	14	-
	15	-

32-point Input Unit

Allocated CIO word		Signal name (CJ/NJ)
CIO	Bit	
	00	INO/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	14	IN14/Jxx_Ch1_In14
Wd m+1 (Input)	15	IN15/Jxx_Ch1_In15
	00	INO/Jxx_Ch2_In00
	01	IN1/Jxx_Ch2_In01
	$:$	$:$
	14	IN14/Jxx_Ch2_In14
		15

16-point Input Unit

Allocated CIO word		Signal name (CJ/NJ)
CIO	Bit	
	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	14	IN14/Jxx_Ch1_In14
	15	IN15/Jxx_Ch1_In15

64-point Input Unit

Allocated CIO word		Signal name ($\mathrm{CJ} / \mathrm{NJ}$)
CIO	Bit	
Wd m (Input)	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	:	:
	14	IN14/Jxx_Ch1_In14
	15	IN15/Jxx_Ch1_In15
Wd m+1 (Input)	00	INO/Jxx_Ch2_In00
	01	IN1/Jxx_Ch2_In01
	:	:
	14	IN14/Jxx_Ch2_In14
	15	IN15/Jxx_Ch2_In15
Wd m+2 (Input)	00	IN0/Jxx_Ch3_In00
	01	IN1/Jxx_Ch3_In01
	:	:
	14	IN14/Jxx_Ch3_ln14
	15	IN15/Jxx_Ch3_ln15
Wd m+3 (Input)	00	IN0/Jxx_Ch4_In00
	01	IN1/Jxx_Ch4_In01
	:	:
	14	IN14/Jxx_Ch4_In14
	15	IN15/Jxx_Ch4_In15

External Interface

8-point/16-point Units (18-point Terminal Blocks)

32-point Units (Models with 40-point Fujitsu Connector or MIL Connector)

64-point Units (Models with Two 40-point Fujitsu Connectors or MIL Connector)

Wiring Basic I/O Units with Terminal Blocks

Electric Wires

The following wire gauges are recommended.

Terminal Block Connector	Wire Size
18 -terminal	AWG 22 to $18\left(0.32\right.$ to $\left.0.82 \mathrm{~mm}^{2}\right)$

Crimp terminals

Use crimp terminals (M3) having the dimensions shown below.

I/O Unit Wiring Methods

An I/O Unit can be connected to an external device by any of the following three methods.

1. User-provided Cable

An I/O Unit can be directly connected to an external device by using a connector.

A	User-provided cable
B	External device
C	Connector

2. Connector-Terminal Block Conversion Unit

Use a Connecting Cable to connect to a Connector-Terminal Block Conversion Unit.
Converting the I/O Unit connector to a screw terminal block makes it easy to connect external devices.

A	Connecting Cable for Connector-Terminal Block Conversion Unit XW2Z
B	Connector-Terminal Block Conversion Unit XW2 \square
C	Conversion to a screw terminal block

Conversion to a screw terminal block
3. I/O Relay Terminal

Use a Connecting Cable to connect to an I/O Relay Terminal.
The I/O specifications can be converted to relay outputs and AC inputs by connecting the I/O Relay Terminal to an I/O Unit.

A	G79 I/O Relay Terminal Connecting Cable
B	G7 $\square \square$ I/O Relay Terminals Or, conversion to relay outputs and AC inputs.

1. Using User-made Cables with Connector

Available Connectors

Use the following connectors when assembling a connector and cable.
32- and 64-point Basic I/O Units with Fujitsu-compatible Connectors
Applicable Units

Model		Specifications
CJ1W-ID231	Input Unit, 24 VDC, 32 inputs	Pins
CJ1W-ID261	Input Unit, 24 VDC, 64 inputs	40

Applicable Cable-side Connectors

Connection	Pins	OMRON set	Fujitsu parts
Solder-type	40	C500-CE404	Socket: FCN-361J040-AU Connector cover: FCN-360C040-J2
Crimped	40	C500-CE405	Socket: FCN-363J040 Connector cover: FCN-360C040-J2 Contacts: FCNN-363J-AU
Pressure-welded	40	C500-CE403	FCN-367J040-AU/F

32- and 64-point Basic I/O Units with MIL Connectors

Applicable Units

Model		Specifications
CJ1W-ID232	Input Unit, 24 VDC, 32 inputs	Pins
CJ1W-ID233	Input Unit, 24 VDC, 64 inputs	40

Applicable Cable-side Connectors

Connection	Pins	OMRON set	DDK parts
Pressure-welded	40	XG4M-4030-T	FRC5-A040-3T0S

Wire Size

We recommend using cable with wire gauges of AWG 24 or AWG $28\left(0.2 \mathrm{~mm}^{2}\right.$ to $\left.0.08 \mathrm{~mm}^{2}\right)$. Use cable with external wire diameters of 1.61 mm max.

Crimping Tools

The following models are recommended for crimping tools and pressure-welding tools for Fujitsu connectors.
Tools for Crimped Connectors (Fujitsu Component)

Product Name	Model
Hand Crimping Tool	FCN-363T-T005/H
Contact Withdrawal Tool	FCN-360T-T001/H

Tools for Pressure-welded Connectors (Fujitsu Component)

Product Name	Model
Hand Press	FCN-707T-T101/H
Cable Cutter	FCN-707T-T001/H
Locator Plate	FCN-367T-T012/H

The following models are recommended for crimping tools for MIL connectors.
Tools for Crimped Connectors (OMRON)

Product Name	Model
Crimping Tool	XY2B-0002
Attachment	XY2B-1007

2．Connecting Connector－Terminal Block Conversion Units

Connection Patterns for Connector－Terminal Block Conversion Units

Pattern	Configuration	Number of connectors	Branching
A		1	None
B			2 branches
D		2	None
F			2 branches

Combination of I／O Units with Connector－Terminal Block Conversion Units

Unit	I／O capacity	Number of connectors	Polarity	Connection pattern	Number of branches	Connecting Cable	Connector－Terminal Block Conversion Unit	Common terminal
CJ1W－ID231	32 inputs	1 Fujitsu connector	NPN／PNP	A	None	XW2Z－■ด口B	XW2D－40G6	None
				A	None	XW2Z－■ด口B	XW2D－40G6－RF＊2	None
				A	None	XW2Z－■ด口B	XW2B－40G5	None
				A	None	XW2Z－■ロロB	XW2B－40G4	None
				A	None	XW2Z－■ด口BU	XW2D－40C6	None
				B	2	XW2Z－■ด口D	XW2D－20G6（2 Units）	None
				B	2	XW2Z－■ด口D	XW2B－20G5（2 Units）	None
				B	2	XW2Z－■ด口D	XW2B－20G4（2 Units）	None
				B	2	XW2Z－■ด口D	XW2C－20G6－IO16（2 Units）	Yes
				B	2	XW2Z－■ด口D	XW2C－20G5－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■ด口D	XW2E－20G5－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■ด口D	XW2F－20G7－IN16（2 Units）＊1	Yes
				B	2	XW2Z－ロロロD	XW2N－20G8－IN16（2 Units）＊1	Yes

Unit	I／O capacity	Number of connectors	Polarity	Connection pattern	Number of branches	Connecting Cable	Connector－Terminal Block Conversion Unit	Common terminal
CJ1W－ID232	32 inputs	1 MIL connector	NPN／PNP	A	None	XW2Z－■ดロK	XW2D－40G6	None
				A	None	XW2Z－■ดロK	XW2D－40G6－RM＊2	None
				A	None	XW2Z－■ด口K	XW2B－40G5	None
				A	None	XW2Z－■ดロK	XW2B－40G4	None
				B	2	XW2Z－■ด口N	XW2D－20G6（2 Units）	None
				B	2	XW2Z－■पロN	XW2B－20G5（2 Units）	None
				B	2	XW2Z－■ด口N	XW2B－20G4（2 Units）	None
				B	2	XW2Z－■ด口N	XW2C－20G6－IO16（2 Units）	Yes
				B	2	XW2Z－■ด口N	XW2C－20G5－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■पロN	XW2E－20G5－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■ด口N	XW2F－20G7－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■ด口N	XW2N－20G8－IN16（2 Units）＊1	Yes
CJ1W－ID233	32 inputs	1 MIL connector	NPN／PNP	A	None	XW2Z－■ดロK	XW2D－40G6	None
				A	None	XW2Z－■ดロK	XW2D－40G6－RM＊2	None
				A	None	XW2Z－■ด口K	XW2B－40G5	None
				A	None	XW2Z－■ดロK	XW2B－40G4	None
				B	2	XW2Z－ดด口N	XW2D－20G6（2 Units）	None
				B	2	XW2Z－■ด口N	XW2B－20G5（2 Units）	None
				B	2	XW2Z－■ด口N	XW2B－20G4（2 Units）	None
				B	2	XW2Z－■पロN	XW2C－20G6－IO16（2 Units）	Yes
				B	2	XW2Z－■ด口N	XW2C－20G5－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■ด口N	XW2E－20G5－IN16（2 Units）＊1	Yes
				B	2	XW2Z－ดด口N	XW2F－20G7－IN16（2 Units）＊1	Yes
				B	2	XW2Z－■ด口N	XW2N－20G8－IN16（2 Units）＊1	Yes
CJ1W－ID261	64 inputs	2 Fujitsu connectors	NPN／PNP	D	None	XW2Z－■ด口B	XW2D－40G6	None
				D	None	XW2Z－$\square \square \square \mathrm{B}$	XW2D－40G6－RF＊2	None
				D	None	XW2Z－ดपดB	XW2B－40G5	None
				D	None	XW2Z－■ด口B	XW2B－40G4	None
				D	None	XW2Z－■ด口BU	XW2D－40C6	None
				F	2	XW2Z－ดด口D	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ด口D	XW2B－20G5（2 Units）	None
				F	2	XW2Z－■ด口D	XW2B－20G4（2 Units）	None
				F	2	XW2Z－■ด口D	XW2C－20G6－IO16（2 Units）	Yes
				F	2	XW2Z－ดด口D	XW2C－20G5－IN16（2 Units）＊1	Yes
				F	2	XW2Z－■ด口D	XW2E－20G5－IN16（2 Units）＊1	Yes
				F	2	XW2Z－■ด口D	XW2F－20G7－IN16（2 Units）＊1	Yes
				F	2	XW2Z－■ด口D	XW2N－20G8－IN16（2 Units）＊1	Yes
CJ1W－ID262	64 inputs	2 MIL connectors	NPN／PNP	D	None	XW2Z－■ดロK	XW2D－40G6	None
				D	None	XW2Z－■ดロK	XW2D－40G6－RM＊2	None
				D	None	XW2Z－■ดロK	XW2B－40G5	None
				D	None	XW2Z－■ดロK	XW2B－40G4	None
				F	2	XW2Z－ดด口N	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■पロN	XW2B－20G5（2 Units）	None
				F	2	XW2Z－$\square \square \square \mathrm{N}$	XW2B－20G4（2 Units）	None
				F	2	XW2Z－■ด口N	XW2C－20G6－IO16（2 Units）	Yes
				F	2	XW2Z－■ด口N	XW2C－20G5－IN16（2 Units）＊1	Yes
				F	2	XW2Z－■ด口N	XW2E－20G5－IN16（2 Units）＊1	Yes
				F	2	XW2Z－■ดロN	XW2F－20G7－IN16（2 Units）＊1	Yes
				F	2	XW2Z－ดपロN	XW2N－20G8－IN16（2 Units）＊1	Yes

＊1．The inputs are NPN．For PNP inputs，reverse the polarity of the external power supply connections to the power supply terminals on the Connector－Terminal Block Conversion Unit．
＊2．Bleeder resistance（ $5.6 \mathrm{k} \Omega$ ）is built in．

Types of Connecting Cables

Cable lenght	XW2Z-■ \square	XW2Z-■ ${ }^{\text {a }}$	XW2Z-पПBU	XW2Z-■D	XW2Z-■]L	XW2Z-D]
0.25 m	-	-	-	-	-	-
0.5 m	XW2Z-050A	XW2Z-050B	XW2Z-050BU	-	-	XW2Z-C50X
1.0 m	XW2Z-100A	XW2Z-100B	XW2Z-100BU	XW2Z-100D	XW2Z-100L	XW2Z-100X
1.5 m	XW2Z-150A	XW2Z-150B	XW2Z-150BU	XW2Z-150D	XW2Z-150L	-
2.0 m	XW2Z-200A	XW2Z-200B	XW2Z-200BU	XW2Z-200D	XW2Z-200L	XW2Z-200X
3.0 m	XW2Z-300A	XW2Z-300B	XW2Z-300BU	XW2Z-300D	XW2Z-300L	XW2Z-300X
5.0 m	XW2Z-500A	XW2Z-500B	XW2Z-500BU	XW2Z-500D	XW2Z-500L	XW2Z-500X
10.0 m	XW2Z-010A	XW2Z-010B	-	XW2Z-010D	XW2Z-010L	XW2Z-010X
15.0 m	XW2Z-15MA	XW2Z-15MB	-	XW2Z-15MD	XW2Z-15ML	-
20.0 m	XW2Z-20MA	XW2Z-20MB	-	XW2Z-20MD	XW2Z-20ML	-

3. Connecting I/O Relay Terminals

Connection Patterns for I/O Relay Terminals

Pattern	Configuration
A	
B	

Combination of I/O Units with I/O Relay Terminal and Connecting Cables

Model	I/O points	Number of connectors	Polarity	Connection pattern	Number of branches	Connecting Cable	I/O Relay Terminal
CJ1W-ID231	32 inputs	1 Fujitsu connector	NPN	A	2	G79-I $\square \mathrm{C}-\square$	G7TC-ID16
				A	2	G79-I $\square \mathrm{C}-\square$	G7TC-IA16
CJ1W-ID232	32 inputs	1 MIL connector	NPN	A	2	G79-O■-■-D1	G7TC-ID16
				A	2	G79-O■-■-D1	G7TC-IA16
CJ1W-ID233	32 inputs	1 MIL connector	NPN	A	2	G79-O■-■-D1	G7TC-ID16
				A	2	G79-OD-■-D1	G7TC-IA16
CJ1W-ID261	64 inputs	2 Fujitsu connectors	NPN	B	2	G79-I $\square \mathrm{C}-\square$	G7TC-ID16
				B	2	G79-1■C- \square	G7TC-IA16
CJ1W-ID262	64 inputs	2 MIL connectors	NPN	B	2	G79-OD-■-D1	G7TC-ID16
				B	2	G79-OD-■-D1	G7TC-IA16

Types of Connecting Cables

Cable lenght	G79-■C	G79-IロC	G79-I \square C- \square	G79-O \square C	G79-O \square C- \square	G79-OD-■-D1
0.25m	-	G79-I25C	-	G79-O25C	-	-
0.5 m	-	G79-I50C	-	G79-O50C	-	G79-O50-25-D1
1.0 m	G79-100C	-	G79-1100C-75	-	G79-O100C-75	G79-O75-50-D1
1.5 m	G79-150C	-	G79-I150C-125	-	G79-O150C-125	-
2.0 m	G79-200C	-	G79-I200C-175	-	G79-O200C-175	-
3.0 m	G79-300C	-	G79-I300C-275	-	G79-O300C-275	-
5.0 m	G79-500C	-	G79-1500C-475	-	G79-O500C-475	-

Dimensions

8-point/16-point Units (18-point Terminal Blocks)
CJ1W-ID201
CJ1W-ID211
CJ1W-ID212
CJ1W-IA201
CJ1W-IA111

32-point Units (Input Units)

With Fujitsu-compatible Connector (40-pin $\times 1$)
CJ1W-ID231

With MIL Connector (40-pin $\times 1$)
CJ1W-ID232
CJ1W-ID233

64-point Units (Input Units)

With Fujitsu-compatible Connector (40-pin $\times 2$)
CJ1W-ID261

With MIL Connector (40-pin $\times 2$)

CJ1W-ID262

Related Manuals

Name	Cat. No.	Contents
CJ-series CJ2 CPU Unit Hardware User's Manual CJ2H-CPU6■-EIP CJ2H-CPU6 CJ2M-CPU	W472	Describes the following for CJ2 CPU Units: - Overview and features - Basic system configuration - Part nomenclature and functions - Mounting and setting procedure - Remedies for errors - Also refer to the Software User's Manual (W473).
SYSMAC CJ Series CJ1H-CPU $\square \square H-R, C J 1 G / H-C P U \square \square H, ~ C J 1 G-C P U \square \square P, ~$ CJ1G-CPU \square , CJ1M-CPU \square Programmable Controllers Operation Manual	W393	Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.
NJ-series CPU Unit Hardware User's Manual NJ501-	W500	An introduction to the entire NJ -series system is provided along with the following information on a Controller built with an NJ501 CPU Unit. - Features and system configuration - Introduction - Part names and functions - General specifications - Installation and wiring - Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501).

Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

[^0]: * The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
 Note: Observe the following restrictions when connecting to a 2-wire sensor.
 - Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
 - Use a sensor with a minimum load current of 3 mA min.
 - Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

[^1]: * The ON response time will be 15μ s maximum and OFF response time will be $90 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
 Note: Observe the following restrictions when connecting to a 2-wire sensor.
 - Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
 - Use a sensor with a minimum load current of 3 mA min.
 - Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

[^2]: * The ON response time will be 120μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
 Note: Observe the following restrictions when connecting to a 2 -wire sensor.
 - Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
 - Use a sensor with a minimum load current of 3 mA min.
 - Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

