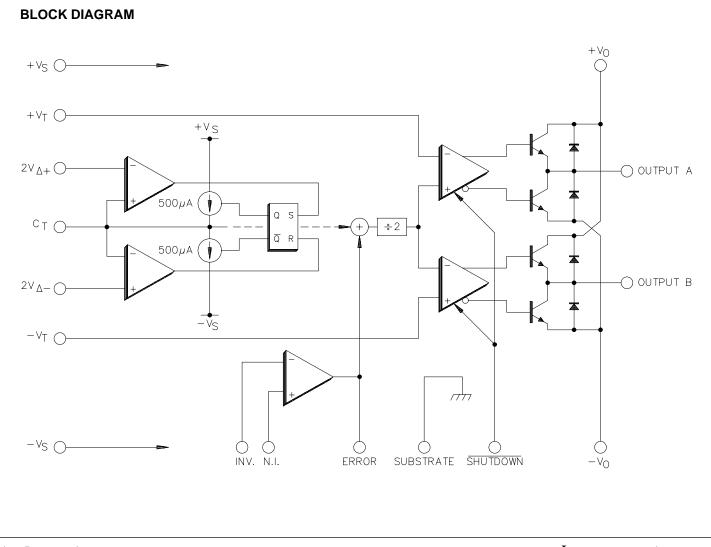


DC MOTOR PULSE WIDTH MODULATOR

DESCRIPTION

The SG1731 is a pulse width modulator circuit designed specifically for DC motor control. It provides a bi-directional pulse train output in response to the magnitude and polarity of an analog error signal input. The device is useful as the control element in motor-driven servo systems for precision positioning and speed control, as well as in audio modulators and amplifiers using carrier frequencies to 350 KHz.


The circuit contains a triangle waveform oscillator, a wideband operational amplifier for error voltage generation, a summing/scaling network for level-shifting the triangle waveform, externally programmable PWM comparators and dual ± 100 mA, $\pm 22V$ totem pole drivers with commutation diodes for full bridge output. A SHUTDOWN terminal forces the drivers into a floating high-impedance state when driven LOW. Supply voltage to the control circuitry and to the output drivers may be from either dual positive and negative supplies, or single-ended.

FEATURES

- ±3.5V to ±15V control supply
- ±2.5V to ±22V driver supply
- Dual 100mA source/sink output drivers
- 5KHz to 350KHz oscillator range
- High slew rate error amplifier
- Adjustable deadband operation
- Digital SHUTDOWN input

HIGH RELIABILITY FEATURES - SG1731

- ♦ Available to MIL-STD-883
- ♦ LMI level "S" processing available

SG1731/SG2731/SG3731

ABSOLUTE MAXIMUM RATINGS (Note1)

Supply Voltage (±V _s)	±18V
Analog Inputs	.±Vs
Digital Inputs (SHUTDOWN)V _s -0.3V to -V _s +	⊦18Ŭ
Output Driver Supply Voltage (±V ₀)	
Source/Sink Output Current (continuous) 20	
Source/Sink Output Current (peak, 500ns) 40	0mA
Note 1. Values beyond which damage may occur.	

THERMAL DATA

J Package:	
Thermal Resistance-Junction to Case, θ_{JC}	°C/W
Thermal Resistance-Junction to Ambient, θ_{IA}	
N Package:	
Thermal Resistance-Junction to Case, θ_{JC}	°C/W
Thermal Resistance-Junction to Ambient, θ ₁₄ 65	

Output Driver Diode Current (continuous) 200mA
Output Driver Diode Current (peak, 500ns) 400mA
Operating Junction Temperature
Hermetic (J - Package) 150°C
Plastic (N - Package) 150°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 Seconds) 300°C

Note A. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Supply Voltage Range ($\pm V_s$) $\pm 3.5V$ to $\pm 15V$	Oscillator Frequency Range 10Hz to 350KHz
Error Amp Common-Mode RangeV _s + 3V to V _s - 3V	Oscillator Voltage (Peak-to-Peak)1V to 10V
Output Driver Supply Voltage Range ±2.5V to ±22V	Oscillator Timing Capacitor (C_{T})
Source/Sink Output Current (continuous) 100mA	Operating Ambient Temperature Range
Source/Sink Output Current (peak, 500ns) 200mA	SG173155°C to 125°C
Output Driver Diode Current (continuous) 100mA	SG273125°C to 85°C
Output Driver Diode Current (peak, 500ns) 200mA	SG3731 0°C to 70°C

Note 2. Range over which the device is functional and parameter limits are guaranteed.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1731 with -55°C \leq T_A \leq 125°C, SG2731 with -25°C \leq T_A \leq 85°C, SG3731 with 0°C \leq T_A \leq 70°C, V_S =±15V, and V_O = ±22V. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter	Test Conditions	SG1731/2731/3731			Units
Falailletei	Test conditions	Min.	Тур.	Max.	Units
Oscillator Section					
C _T Charging Current	$T_{A} = 25^{\circ}C$	450	500	550	μA
	$T_A = T_{MIN}$ to T_{MAX}	400		600	μA
2V∆± Input Bias Current	$V_{\rm CM} = \pm 5 V$			-20	μΑ
Initial Oscillator Frequency	$C_{T} = 1000 \text{pF}, 2V\Delta \pm = \pm 5\text{V}, T_{A} = 25^{\circ}\text{C}$ $C_{T} = 1000 \text{pF}, 2V\Delta \pm = \pm 5\text{V}$	22.5	25.0	27.5	KHz
Temperature Stability (Note 3)	$C_{T} = 1000 \text{pF}, 2V\Delta \pm = \pm 5V$			10	%
Error Amplifier Section (Note 5)					
Input Offset Voltage				10	mV
Input Bias Current				3	μΑ
Input Offset Current				600	nA
Open Loop Voltage Gain	$R_{L} = 2K\Omega$	70			dB
Output Voltage Swing	$R_{L} = 2K\Omega$	±10			V
Common-Mode Rejection Ratio		70			dB
Slew Rate (Notes 3 and 4)	$T_A = 25^{\circ}C$	5	10		V/µs
Unity Gain Bandwidth (Notes 3 and 4)	$T_A = 25^{\circ}C$	0.7	1		MHz
PWM Comparators					
Input Bias Current	$\pm V_{T} = \pm 3V$			6	μΑ

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	SG1731	SG1731/2731/3731		
Faidilelei	Test Conditions	Min. 1	yp. Max.	Units	
SHUTDOWN Section					
Logic Threshold	-V _s = -3.5V to -15V	V _s +0.8	V _s +2.0	V	
SHUTDOWN HIGH Current	$V_{\overline{SHUTDOWN}}^{\sigma} = -V_{s} + 2.4V$	Ũ	4 00	μΑ	
SHUTDOWN LOW Current	$V_{\text{SHUTDOWN}}^{\text{SHUTDOWN}} = -V_{\text{S}}^{\text{SHUTDOWN}}$		-1.0	mΑ	
Output Drivers (Each Output)		· ·	· · ·		
HIGH Output Voltage	I _{SOURCE} = 20mA	19.2		V	
	I _{SOURCE} = 100mA	19.0		V	
LOW Output Voltage	$I_{SINK} = 20 \text{mA}$		-19.2	V	
	$I_{SINK} = 100 \text{mA}$		-19.0	V	
Driver Risetime	$C_1 = 1000 pF$		300	ns	
Driver Falltime	$C_{L} = 1000 pF$		300	ns	
Total Supply Current		•			
V _s Supply Current	$V_{\text{SHUTDOWN}} = -V_{\text{S}} + 0.8V$		14	mA	
V _o Supply Current	$V_{\overline{SHUTDOWN}} = -V_{s} + 0.8V$ $V_{\overline{SHUTDOWN}} = -V_{s} + 0.8V$		6	mΑ	

Note 3. These parameters, although guaranteed, are not tested in production. Note 5. $V_{CM} = \pm 12V$. Note 4. Unity Gain Inverting 10K Ω Feedback Resistance.

APPLICATION INFORMATION

SUPPLY VOLTAGE

The SG1731 requires a supply voltage for the control circuitry (V_s) and for the power output drivers (V_o). Each supply may be either balanced positive and negative with respect to ground, or single-ended. The only restrictions are:

- 1. The voltage between +V $_{\rm S}$ and -V $_{\rm S}$ must be at least 7.0V; but no more than 44V.
- 2. The voltage between +V $_{\rm o}$ and -V $_{\rm o}$ must be at least 5.0V; but no more than 44V.
- 3. +V_o must be at least 5V more positive than -V_s. This eliminates the combination of a single-ended positive control supply with a single-ended negative driver supply.

SUBSTRATE CONNECTION

The substrate connection (Pin 10) must always be connected to either $-V_s$ or $-V_o$, whichever is more negative. The substrate must also be well bypassed to ground with a high quality capacitor.

OSCILLATOR

The triangle oscillator consists of two voltage comparators, a set/ reset flip-flop, a bi-directional 500µA current source, and an external timing capacitor C_T . A positive reference voltage (2V Δ +) applied to Pin 2 determines the positive peak value of the triangle, and a negative reference voltage (2V Δ -) at Pin 7 sets the negative peak value of the triangle waveform.

Since the value of the internal current source is fixed at a nominal $\pm 500\mu$ A, the oscillator period is a function of the selected peak-to-peak voltage excursion and the value of C_T. The theoretical expression for the oscillator period is:

$$T_{\rm OSC} = \frac{2C_{\rm T} \, dV}{5 \, x \, 10^{-4}} \tag{Eq.1}$$

where $\rm C_{T}$ is the timing capacitor in Farads and dV is $\rm V_{osc}$ in Volts peak-to-peak.

As a design aid, the solutions to Equation 1 over the recommended range of T_{osc} and V_{osc} are given in graphic form in Figure 1. The lower limit on T_{osc} is 1.85µs, corresponding to a maximum frequency of 350 KHz. The maximum value of V_{osc} , (2V Δ +) - (2V Δ -), is 10V peak-to-peak for linear waveforms.

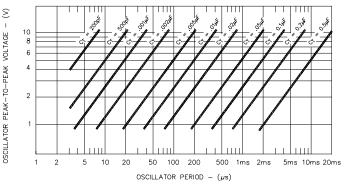


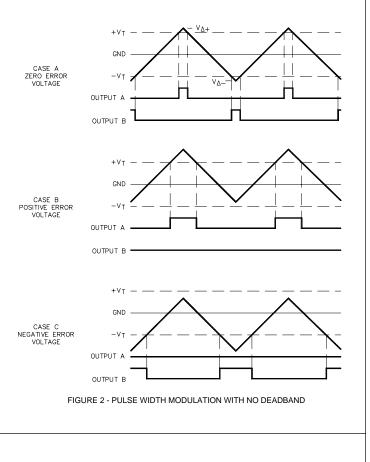
FIGURE 1 - SG1731 OSCILLATOR PERIOD VS. Vosc AND CT

ERROR AMPLIFIER

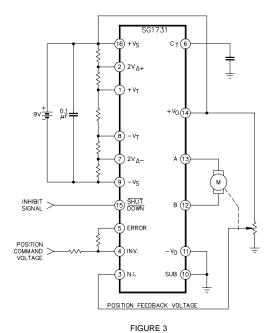
The error amplifier of the SG1731 is a conventional internallycompensated operational amplifier with low output impedance. All of the usual feedback and frequency compensation techniques may be use to control the closed-loop gain characteristics. The control supply voltage $\pm V_s$ will determine the input common mode range and output voltage swing; both will extend to within 3V of the V_s supply.

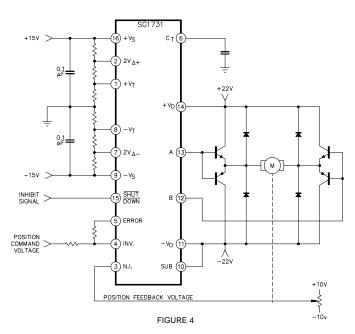
PULSE WIDTH MODULATION

Pulse width modulation occurs by comparing the triangle waveform to a fixed upper $(+V_{\tau})$ and lower $(-V_{\tau})$ threshold voltage. A crossing above the upper threshold causes Output A to switch to the HIGH state, and a crossing below


SG1731/SG2731/SG3731

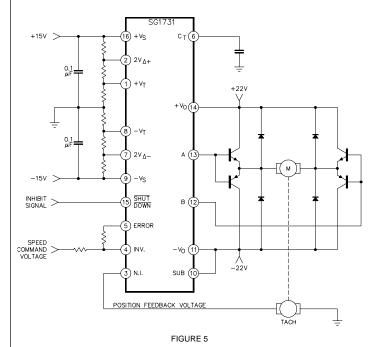
APPLICATION INFORMATION (continued)


the lower threshold causes Output B to switch to the HIGH state. If $\pm V_s$ is less than $\pm 8V$ then $\pm V_\tau$ can be obtained with resistors from $\pm V_s$. If $\pm V_s$ is greater than $\pm 8V$ use zeners.


Threshold crossings are generated by shifting the triangle waveform up and down with the error voltage (Pin 5). A positive error voltage will result in a pulse width modulated output at Driver A (Pin 13). Similarly, a negative error voltage produces a pulse train at Driver B (Pin 12). Figure 2 illustrates this process for the case where $V_{\Delta +}$ is greater than V_{τ} .

It is important to note that the triangle shifting circuit also attenuates the waveform seen at C_T by a factor of 2. This results in a waveform at the PWM comparators with a positive peak of V Δ + and a negative peak of V Δ -, and must be taken into account when selecting the values for +V_T and -V_T.

APPLICATION CIRCUITS



In this simple battery-powered position servo, the control supply and driver supply are both single-ended positive with respect to ground. A high torque position servo is obtained by buffering the output drivers to obtain higher output current.

SG1731/SG2731/SG3731

APPLICATION CIRCUITS

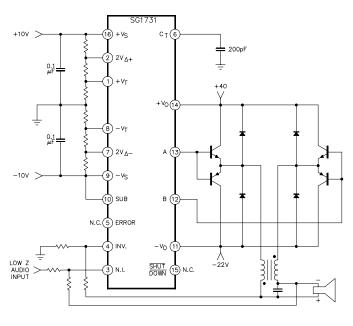


FIGURE 6

Bi-directional speed control results when the feedback voltage transducer is a tachometer.

The two-quadrant transfer function of the SG1731 is ideal for pulse width modulated audio power amplifiers.

Package	Part No.	Ambient Temperature Range	Connection Diagram
PIN CERAMIC DIP PACKAGE	SG1731J/883B SG1731J SG2731J SG3731J	-55°C to 125°C -55°C to 125°C -25°C to 85°C 0°C to 65°C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
-PIN PLASTIC DIP - PACKAGE	SG2731N SG3731N	-25°C to 85°C 0°C to 65°C	$\begin{array}{c ccccc} C_{T} & \square & 6 & 11 \square & -V_{O} \\ 2V_{\Delta} & \square & 7 & 10 \square & SUBSTRATE \\ -V_{T} & \square & 8 & 9 \square & -V_{S} \end{array}$

CONNECTION DIAGRAMS & ORDERING INFORMATION (See Note Below)

Note 1. All packages are viewed from the top.

Note 2. Contact factory for flatpack and leadless chip carrier availability.