

Product List

SM89516L25, 25MHz 64KB internal flash MCU SM89516C25, 25MHz 64KB internal flash MCU

Description

The SM89516 series product is an 8-bit single chip micro controller with 64KB flash & 1KB RAM embedded. It is a derivative of the 8052 micro controller family. With its hardware features and powerful instruction set, it's straight forward to make it a versatile and cost effective controller for those applications which demand up to 32 I/O pins for PDIP package or up to 36 I/O pins for PLCC/QFP package, or applications which need up to 64KB memory either for program or for data or mixed. To program the on-chip flash memory, a commercial writer is available to do it in parallel programming method.

Ordering Information

yymmv SM89516ihhkL

yy: year, ww: month

v: version identifier { , A, B,...}

i: process identifier $\{L=3.0V\sim3.6V, C=4.5V\sim5.5V\}$

hh: working clock in MHz {25}

k: package type postfix {as below table}

L:PB Free identifier

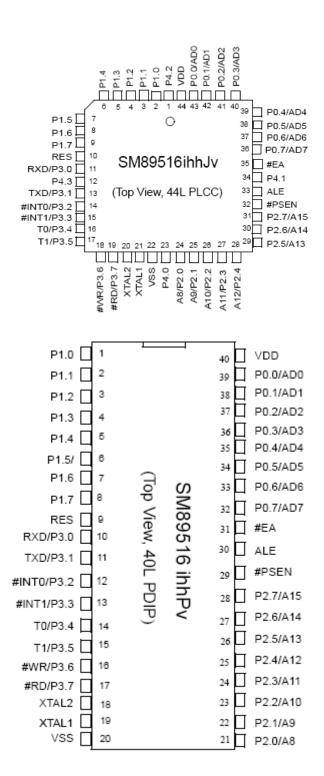
{No text is Non-PB Free, "P" is PB Free}

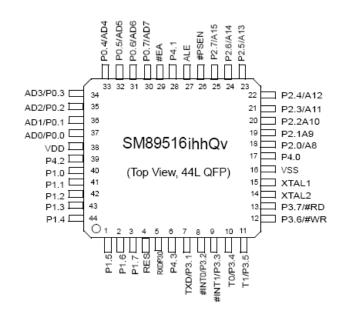
Postfix	Package	Pin / Pad Configuration	Dimension
P	40L PDIP	Page 2	Page 16
J	44L PLCC	Page 2	Page 17
Q	44L QFP	Page 2	Page 18

Features

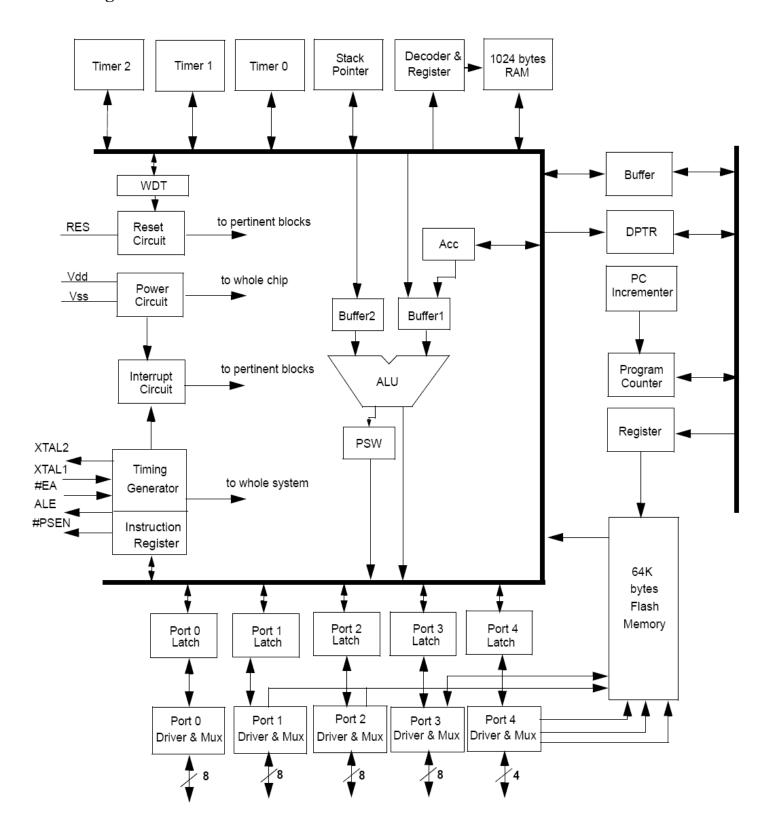
● Working Voltage: 3.0V ~ 3.6V For L Version.

 $4.5V \sim 5.5V$ For C Version.


- General 8052 family compatible
- 12 clocks per machine cycle
- 64K byte on chip program flash
- 1024 bytes data RAM
- Three 16 bit Timers/Counters
- Four 8-bit I/O ports for PDIP package
- Four 8-bit I/O ports + one 4-bit I/O ports for PLCC or QFP package
- Full duplex serial channel
- Bit operation instruction
- Page free jumps
- 8-bit Unsigned Division
- 8-bit Unsigned Multiply
- BCD arithmetic operation
- Direct Addressing
- Indirect Addressing
- Nested Interrupt
- Two priority level interrupts
- A serial I/O port
- Power save modes: Idle mode and Power down mode
- Code protection function
- One watch dog timer (WDT)
- Low EMI (inhibit ALE)


Taiwan 6F, No.10-2 Li- Hsin 1st Road, Science-based Industrial Park, Hsinchu, Taiwan 30078

TEL: 886-3-567-1820 886-3-567-1880 FAX: 886-3-567-1891 886-3-567-1894


Pin Configuration

Block Diagram

Pin Description

40L	44L	44L				
PDIP	QFP	PLCC	Symbol	Active	I/O	Names
Pin#	Pin#	Pin#				
1	40	2	P1.0		i/o	bit 0 of port 1
2	41	3	P1.1		i/o	bit 1 of port 1
3	42	4	P1.2		i/o	bit 2 of port 1
4	43	5	P1.3		i/o	bit 3 of port 1
5	44	6	P1.4		i/o	bit 4 of port 1
6	1	7	P1.5		i/o	bit 5 of port 1
7	2	8	P1.6		i/o	bit 6 of port 1
8	3	9	P1.7		i/o	bit 7 of port 1
9	4	10	RES	Н	i	Reset
10	5	11	P3.0/RXD		i/o	bit 0 of port 3 & Receiver data
11	7	13	P3.1/TXD	T /	i/o	bit 1 of port 3 & Transmit data
12	8	14	P3.2/#INT0	L/-	i/o	bit 2 of port 3 & low true interrupt 0
13	9	15	P3.3/#INT1	L/-	i/o	bit 3 of port 3 & low true interrupt 1
14 15	10	16 17	P3.4/T0 P3.5/T1		i/o	bit 4 of port 3 & Timer 0 bit 5 of port 3 & Timer 1
16	11 12	18	P3.6/#WR	L/-	i/o i/o	bit 6 of port 3 & external memory write
17	13	19	P3.7/#RD	L/-	i/o	bit 7 of port 3 & external memory read
18	14	20	XTAL2	L/-	0	Crystal out
19	15	21	XTAL1		i	Crystal in
20	16	22	VSS		1	Sink Voltage, Ground
21	18	24	P2.0/A8		i/o	bit 0 of port 2 & bit 8 of ext. memory address
22	19	25	P2.1/A9		i/o	bit 1 of port 2 & bit 9 of ext. memory address
23	20	26	P2.2/A10		i/o	bit 2 of port 2 & bit 10 of ext. memory address
24	21	27	P2.3/A11		i/o	bit 3 of port 2 & bit 11 of ext. memory address
25	22	28	P2.4/A12		i/o	bit 4 of port 2 & bit 12 of ext. memory address
26	23	29	P2.5/A13		i/o	bit 5 of port 2 & bit 13 of ext. memory address
27	24	30	P2.6/A14		i/o	bit 6 of port 2 & bit 14 of ext. memory address
28	25	31	P2.7/A15		i/o	bit 7 of port 2 & bit 15 of ext. memory address
29	26	32	#PSEN	L	0	program storage enable
30	27	33	ALE	-	0	address latch enable
31	29	35	#EA	L	i	External access
32	30	36	P0.7/AD7		i/o	bit 7 of port 0 & data/address bit 7 of ext. memory
33	31	37	P0.6/AD6		i/o	bit 6 of port 0 & data/address bit 6 of ext. memory
34	32	38	P0.5/AD5		i/o	bit 5 of port 0 & data/address bit 5 of ext. memory
35	33	39	P0.4/AD4		i/o	bit 4 of port 0 & data/address bit 4 of ext. memory
36	34	40	P0.3/AD3		i/o	bit 3 of port 0 & data/address bit 3 of ext. memory
37	35	41	P0.2/AD2		i/o	bit 2 of port 0 & data/address bit 2 of ext. memory
38	36 37	42	P0.1/AD1		i/o i/o	bit 1 of port 0 & data/address bit 1 of ext. memory bit 0 of port 0 & data/address bit 0 of ext. memory
40	38	43	P0.0/AD0 VDD		1/0	Drive Voltage, +5 Vcc
40					i/o	E 7
	17 28 39 6	23 34 1 12	P4.0 P4.1 P4.2 P4.3		i/o i/o i/o i/o	bit 0 of Port 4 bit 1 of Port 4 bit 2 of Port 4 bit 3 of port 4

Special Function Register (SFR)

The address \$80 to \$FF can be accessed by direct addressing mode only.

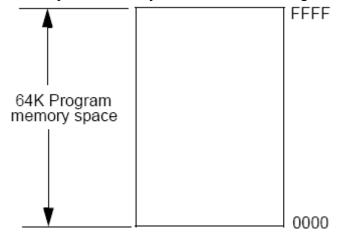
Address \$80 to \$FF is SFR area.

The following table lists the SFRs which are identical to general 8052, as well as SM89516A Extension SFRs.

Special Function Register (SFR) Memory Map

В						
ACC						
P4						
PSW						
T2CON		RCAP2L	RCAP2H	TL2	TH2	
IP						SCONF
P3						
IE						
P2						
SCON	SBUF					WDTC
P1						
TCON	TMOD	TL0	TL1	TH0	TH1	
P0	SP	DPL	DPH		RCON	PCON

Note: The text of SFRs with bold type characters are Extension Special Function Registers for SM89516


Extension Function Description

1. Memory Structure

The SM89516 is the general 8052 hardware core to integrate the expanded 768B data RAM and 64KB flash program memory as a single chip micro controller. Its memory structure follows general 8052 structure.

1.1 Program Memory

The SM89516 has 64K bytes on-chip flash memory which can be used as general program memory.

1.2 Data Memory

The SM89516 has 1K bytes on-chip RAM, 256 bytes of it are the same as general 8052 internal memory structure while the expanded 768 bytes on-chip RAM can be accessed by external memory addressing method (by instruction MOVX).

				02FF
			Expanded 768 bytes (Accessed by direct external addressing mode, by instruction MOVX)	
		FF	(OME = 1)	
FF Higher 128 bytes (Access by indirect addressing mode only)	SFR (Accessed by direct addressing mode only)			
Lower 128 bytes (Accessed by direct & indirect addressing mode)	80		0000

Data Memory - Lower 128 byte

Data memory \$00 to \$FF is the same as 8052

The address \$00 to \$7F can be accessed by direct and indirect addressing modes.

Address \$00 to \$1F is register area.

Address \$20 to \$2F is memory bit area.

Address \$30 to \$7F is for general memory area.

Data memory - Higher 128 byte

The address \$80 to \$FF can be accessed by indirect addressing mode only. Addressing \$80 to \$FF is data area.

Data Memory - Expanded 768 bytes

From external address \$0000 to \$02FF is the on-chip expanded RAM area, total 768 bytes. This area can be accessed by external direct addressing mode only (by instruction MOVX).

Internal RAM Control Register (RCON, \$85)

bit-7 bit-0

	Unused	Unused	Unused	Unused	Unused	Unused	RAMS1	RAMS0
Read / Write:	-		-	-	-	-	R/W	R/W
Reset value:	*	*	*	*	*	*	0	0

SM89516A has 768 byte on-chip RAM which can be accessed by external memory addressing method only. (By instruction MOVX). The address space of instruction MOVX @Rn is determined by bit 1 and bit 0 (RAMS1, RAMS0) of RCON. The default setting of RAMS1, RAMS0 bits is 00 (page0).

RAMS1	RAMS0	MOVX @Ri i=0,1 mapping to expended RAM address					
0	0	\$0000 ~ \$00FF					
0	1	\$0100 ~ \$01FF					
1	0	\$0200 ~ \$02FF					

The port 0, port2, port3.6 and port3.7 can be used as general purpose I/O pin while port0 is open-drain structure.

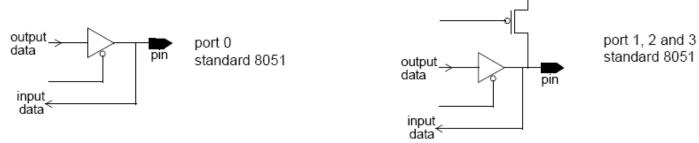
System Control Register (SCONF, \$BF)

bit-7 bit-0

	WDR	Unused	Unused	Unused	Unused	Unused	OME	ALEI
Read / Write:	R/W	-	-	-	-	-	R/W	R/W
Reset value:	0	*	*	*	*	*	1	0

WDR: Watch Dog Timer Reset. When system reset by Watch Dog Timer overflow, WDR will be set to 1

OME: 768 bytes on-chip RAM enable bit ALEI: ALE output inhibit bit, to reduce EMI


The bit 7(WDR) of SCONF is Watch Dog Timer Reset bit. It will be set to 1 when reset signal generated by WDT overflow. User should check WDR bit whenever un-predicted reset happened.

1.3 I/O Pin Configuration

The ports 1, 2 and 3 of standard 8051 have internal pull-up resistor, and port 0 has open-drain outputs. Each I/O pin can be used independently as an input or an output. For I/O ports to be used as an input pin, the port bit latch must contain a '1' which turns off the output driver FET. Then for port 1, 2 and 3 port pin is pulled high by a weak internal pull-up, and can be pulled low by an external source. The port 0 has open-drain outputs which means its pull-ups are not active during normal port operation. Writing '1' to the port 0 bit latch will causing bit floating so that it can be used as a high-impedance input.

The port 4 used as GPIO will has the same function as port 1, 2 and 3.

2. Port 4 for PLCC or QFP package:

The bit addressable port 4 is available with PLCC or QFP package. The port 4 has only 4 pins and its port address is located at 0D8H. The function of port 4 is the same as the function of port 1, port 2 and port 3.

Port4 (P4, \$D8)

bit-7

Read / Write: Reset value:

Unused	Unused	Unused	Unused	P4.3	P4.2	P4.1	P4.0
-	-	-	-	R/W	R/W	R/W	R/W
*	*	*	*	1	1	1	1

The bit 3, bit 2, bit 1, bit 0 output the setting to pin P4.3, P4.2, P4.1, P4.0 respectively.

The port 4 output buffers can sink 20mA and can drive LED display directly.

Extension Function Description

3. Watch Dog Timer

The Watch Dog Timer (WDT) is a 16-bit free-running counter that generate reset signal if the counter overflows. The WDT is useful for systems which are susceptible to noise, power glitches, or electronics discharge which causing software dead loop or runaway. The WDT function can help user software recover form abnormal software condition. The WDT is different from Timer0, Timer1 and Timer2 of general 8052. To prevent a WDT reset can be done by software periodically clearing the WDT counter.

The SM89516 WDT has selectable divider input for the time base source clock. To select the divider input, the setting of bit2~bit0 (PS2~PS0) OF Watch Dog Timer Control Register (WDTC) should be set accordingly.

The WDT is enable by setting 1 to the bit 7 (WDTE) of WDTC. After WDTE set to 1, the 16-bit counter starts to count with the selected time base source clock which set by PS2~PS0. It will generate a reset signal when overflows. The WDTE bit will be cleared to 0 automatically when SM89516 been reset, either hardware reset or WDT reset.

To reset the WDT is done by setting 1 to the bit 5 (CLEAR) of WDTC. This will clear the content of the 16-bit counter and let the counter re-start to count from the beginning.

3.1 Watch Dog Timer Registers: WDT Control Register (WDTC, \$9F)

bit-7 bit-0

Read / Write: Reset value:

WDTE	R	Clear	Unused	Unused	PS2	PS1	PS0
R/W	-	R/W	-	-	R/W	R/W	R/W
0	*	0	*	*	0	0	0

WDTE: Watch Dog Timer enable bit CLEAR: Watch Dog Timer reset bit

PS2~PS0: clock source divider selection bit

PS [2:0]	Divider (OSC in)	Time Period (ms) @40MHz
000	8	13.1
001	16	26.21
010	32	52.42
011	64	104.8
100	128	209.71
101	256	419.43
110	512	838.86
111	1024	1677.72

4. Reduce EMI Function

The SM89516 allows user to reduce the EMI emission by setting 1 to the bit 0 (ALEI) of SCONF register. This function will inhibit the clock signal in Fosc/6Hz output to the ALE pin. This function is available when there is no external program memory or no external data RAM in the system.

Operating Conditions

Symbol	Description		Тур.	Max.	Unit.	Remarks
TA	Operating temperature		25	70	$^{\circ}$	Ambient temperature under bias
VCC5	Supply voltage	4.5	5.0	5.5	V	For C Version
VCC3	Supply voltage	3	3.3	3.6	V	For L Version
Fosc 25	Oscillator Frequency	3.0	16	16	MHz	For 5V, 3.3V application
Fosc 40	Oscillator Frequency	3.0	25	25	MHz	For 5V, 3.3V application

DC Characteristics

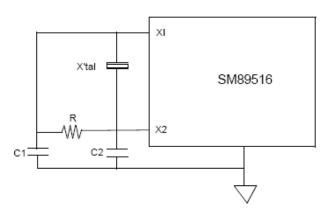
(12MHz, typical operating conditions, valid for SM89516 series)

Symbol	Parameter	Valid	Min.	Max.	Unit	Test Conditions
VIL1	Input Low Voltage	port 0,1,2,3,4,#EA	-0.5	0.8	V	
VIL2	Input Low Voltage	RES, XTAL1	0	0.8	V	
VIH1	Input High Voltage	port 0,1,2,3,4,#EA	2.0	Vcc+0.5	V	
VIH2	Input High Voltage	RES, XTAL1	70%Vcc	Vcc+0.5	V	
VOL1	Output Low Voltage	port 0, ALE, #PSEN		0.45	V	IOL=3.2mA
VOL2	Output Low Voltage	port 1,2,3,4		0.45	V	IOL=1.6mA
VOH1	Output High Voltage	port 0	2.4		V	IOH=-800uA (only for VCC =5V)
VOITI	Output High Voltage	ροιτ σ	90%Vcc		٧	IOH=-80uA
VOH2	Output High Voltage	port 1,2,3,4,ALE,#PSEN	2.4		V	IOH=-60uA (only for VCC =5 V)
VOLIZ	Output High Voltage	port 1,2,3,4,ALE,#F3EN	90%Vcc		V	IOH=-10uA
IIL	Logical 0 Input Current	port 1,2,3,4		-75	uA	Vin=0.45V
ITL	Logical Transition Current	port 1,2,3,4		-650	uA	Vin=2.0V
ILI	Input Leakage Current	port 0, #EA		±10	uA	0.45V <vin<vcc< td=""></vin<vcc<>
R RES	Reset Pull-down Resistance	RES	50	300	Kohm	
C IO	Pin Capacitance			10	pF	Freq=1MHz, Ta=25 $^{\circ}\!$
				20	mA	Active mode, 16MHz
I CC	Power Supply Current	Vdd		6.5	mA	Idle mode, 16MHz
				50	uA	Power down mode

AC Characteristics

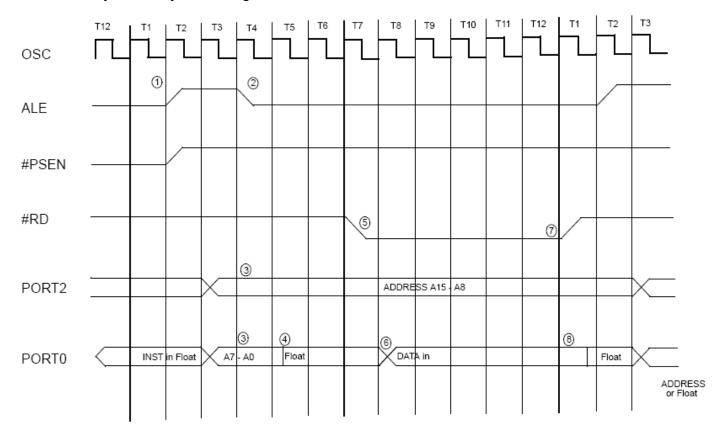
(16/25MHz, operating conditions; CL for Port 0, ALE and PSEN Outputs=100pF; CL for all Other Output=80pF)

Symbol	Parameter	Valid Cycle	fosc=16MHz		Variable fosc			Unit	Remarks	
.,			Min.	Тур.	Max	Min.	Тур.	Max	· · · · ·	
T LHLL	ALE pulse width	RD/WRT	115			2xT - 10			nS	
T AVLL	Address Valid to ALE low	RD/WRT	43			T - 20			nS	
T LLAX	Address Hold after ALE low	RD/WRT	53			T - 10			nS	
T LLIV	ALE low to Valid Instruction In	RD			240			4xT - 10	nS	
T LLPL	ALE low to #PSEN low	RD	53			T - 10			nS	
T PLPH	#PSEN pulse width	RD	173			3xT - 15			nS	
T PLIV	#PSEN low to Valid Instruction In	RD			177			3xT - 10	nS	
T PXIX	Instruction Hold after #PSEN	RD	0			0			nS	
T PXIZ	Instruction Float after #PSEN	RD			87			T + 25	nS	
T AVIV	Address to Valid Instruction In	RD			292			5xT -20	nS	
T PLAZ	#PSEN low to Address Float	RD			10			10	nS	
T RLRH	#RD pulse width	RD	365			6xT - 10			nS	
T WLWH	#WR pulse width	WRT	365			6xT - 10			nS	
T RLDV	#RD low to Valid Data In	RD			302			5xT - 10	nS	
T RHDX	Data Hold after #RD	RD	0			0			nS	
T RHDZ	Data Float after #RD	RD			145			2xT+20	nS	
T LLDV	ALE low to Valid Data In	RD			590			8xT - 10	nS	
T AVDV	Address to Valid Data In	RD			542			9xT - 20	nS	
T LLYL	ALE low to #WR High or #RD low	RD/WRT	178		197	3xT - 10		3xT+10	nS	
T AVYL	Address Valid to #WR or #RD low	RD/WRT	230			4xT - 20			nS	
T QVWH	Data Valid to #WR High	WRT	403			7xT - 35			nS	
T QVWX	Data Valid to #WR transition	WRT	38			T - 25			nS	
T WHQX	Data hold after #WR	WRT	73			T + 10			nS	
T RLAZ	#RD low to Address Float	RD						5	nS	
T YALH	#WR or #RD high to ALE high	RD/WRT	53		72	T -10		T + 10	nS	
T CHCL	clock fall time								nS	
T CLCX	clock low time								nS	
T CLCH	clock rise time								nS	
T CHCX	clock high time								nS	
T, TCLCL	clock period			63		ICC Idle r	1/fosc		nS	

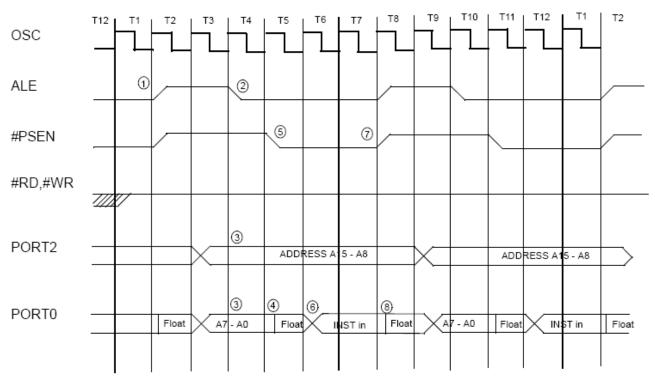


ICC Idle mode test circuit Vcc VCC RST RST ĒΑ SM89516 SM89516 XTAL2 XTAL2 (NC) XTAL1 XTAL1 Clock Signal Clock Signal VSS

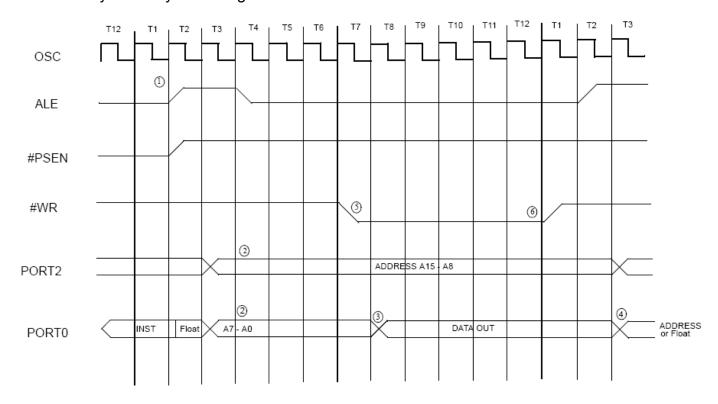
Application Reference


Valid for SM89516						
X'tal	3MHz	6MHz	9MHz	12MHz		
C1	30 pF	30 pF	30 pF	22 pF		
C2	30 pF	30 pF	30 pF	22 pF		
R	open	open	open	open		
X'tal	16MHz	25MHz				
C1	30 pF	15 pF				
C2	30 pF	15 pF				
R	open	open				

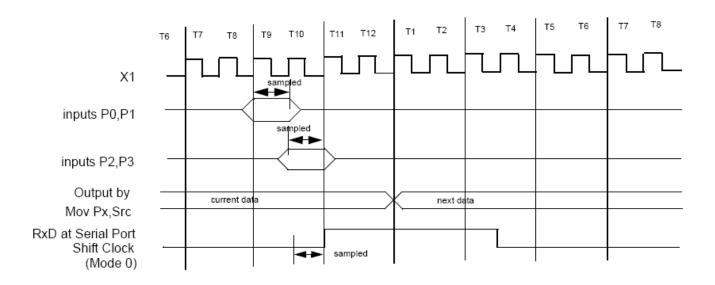
NOTE: Oscillation circuit may differs with different crystal or ceramic resonator in higher oscillation frequency which was due to each crystal or ceramic resonator has its own characteristics.


User should check with the crystal or ceramic resonator manufacturer for appropriate value of external components.

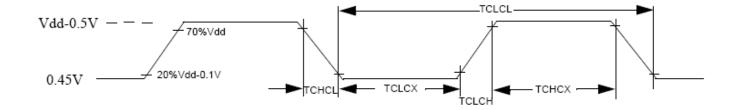
Data Memory Read Cycle Timing

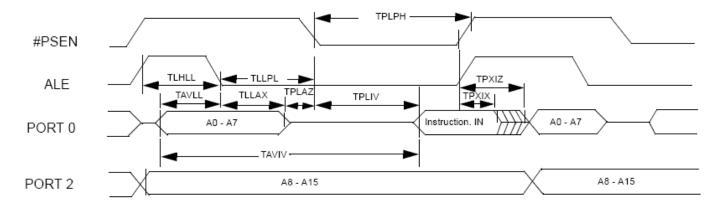


Program Memory Read Cycle Timing

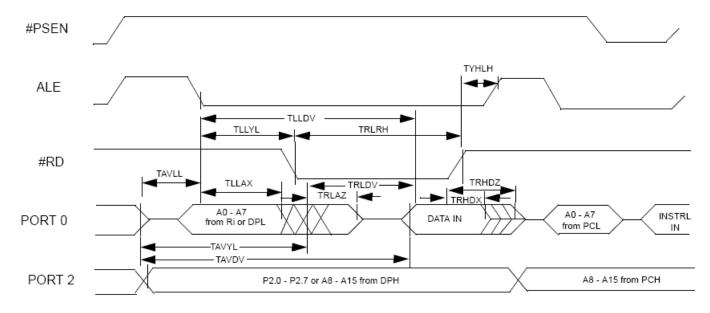


Data Memory Write Cycle Timing

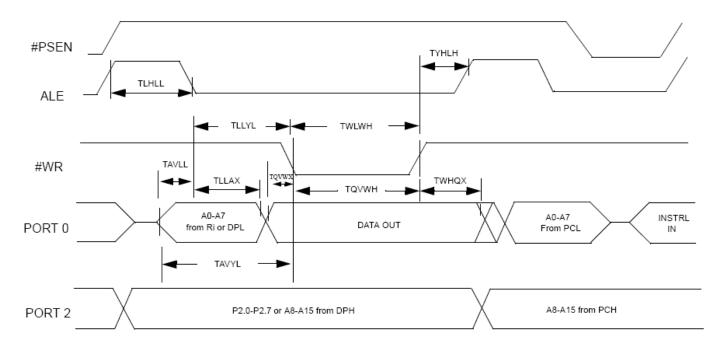



I/O Ports Timing

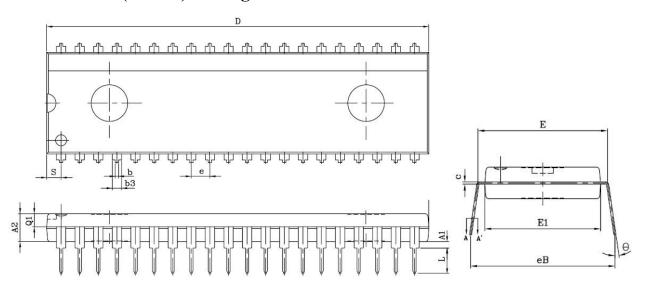
Timing Critical, Requirement of External Clock (Vss=0.0V is assumed)

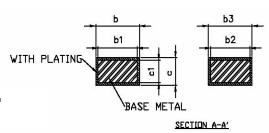


Tm.I External Program Memory Read Cycle



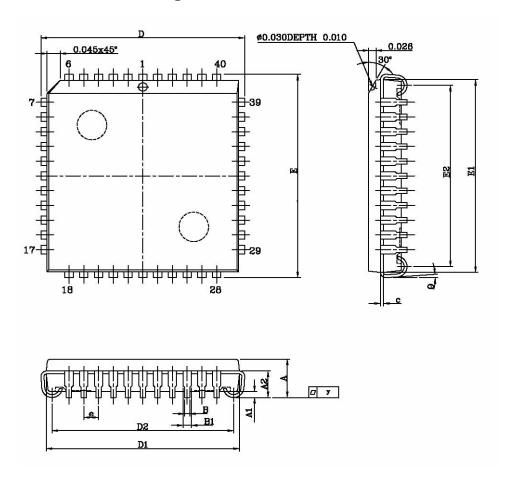
Tm.II External Data Memory Read Cycle

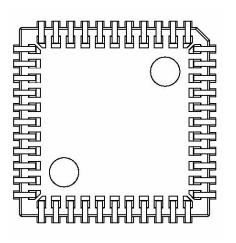



Tm.III External Data Memory Write Cycle

PDIP 40L (600mil) Package Information:

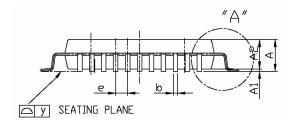
Ī	BASE METAL
	SECTION A-A'

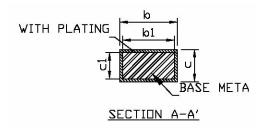

Note:

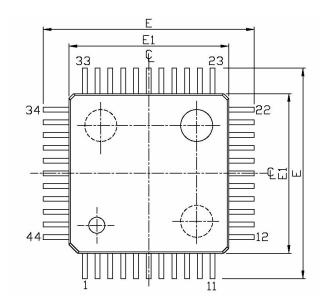

- 1. Refer to JEDEC STD.MS-011(AC).
- 2. Dimension D and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D and E1 are maximum plastic body size dimension include mold mismatch.
- 3. Dimension b3 does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b3 dimension by more than 0.2mm.

Symbol	Dimension in mm			Dimension in MIL		
Symbol	Min	Nom	Max	Min	Nom	Max
A1	0.254	_	_	10	_	_
A2	3.683	3.810	3.937	145	150	155
b	0.356	0.500	0.660	14	20	26
b1	0.356	0.457	0.508	14	18	22
b2	1.016	1.270	1.524	40	50	60
b3	1.016	1.321	1.626	40	52	64
С	0.203	0.254	0.432	8	10	17
c1	0.203	0.254	0.356	8	10	14
D	52.07	52.2	52.32	2050	2055	2060
E	14.99	15.24	15.49	590	600	610
E1	13.69	13.87	13.94	539	546	549
е	_	2.540	_		100	_
eB	15.75	16.26	16.76	620	640	660
L	2.921	3.302	3.683	115	130	145
S	1.727	1.981	2.235	68	78	88
Q1	1.651	1.778	1.905	65	70	75
θ	0°	_	10°	0°	_	10°

PLCC 44L Package Information:






UNIT	INCU/DEE)	MM(BASE)		
SYMBOL	INCH(REF)			
Α	0.180(MAX)	4.572(MAX)		
A1	0.024 ±0.005	0.52 ±0.14		
A2	0.105 ±0.005	2.667 ±0.127		
В	0.018 + 0.004 - 0.002	0.457 + 0.102 - 0.051		
B1	0.028 + 0.004 - 0.002	0.711 + 0.102 - 0.051		
С	0.010(TYP)	0.254(TYP)		
D	0.690 ±0.010	17.526 ±0.254		
D1	0.653 ±0.003	16.586 ±0.076		
D2	0.610 ±0.020	15.494 ±0.508		
Е	0.690 ±0.010	17.526 ±0.254		
E1	0.653 ±0.003	16.586 ±0.076		
E2	0.610 ±0.010	15.494 ±0.254		
е	0.050(TYP)	1.270(TYP)		
у	0.003(MAX)	0.076(MAX)		
θ	0~5°	0~5°		

QFP 44L(10x10x2.0mm) Package Information:

Note:

- 1. Refer to JEDC STD.MS-022(AB).
- Dimension E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.E1 are maximum plastic body size dimension include mold mismatch.
- Dimension b does not include dambar protrusion .Allowable dambar protrusion shall not cause the lead width to exceed the maximum b3 dimension by more than 0.1 mm.

Symbol	Dimension in mm			Dimension in MIL		
- Cymbol	Min	Nom	Max	Min	Nom	Max
Α	_	_	2.45	_	_	964
A 1	0.05	0.15	0.25	2.1	6.0	9.6
A2	1.90	2.00	2.10	74.8	78.7	82.7
b	0.29	0.32	0.45	11.4	12.6	17.7
b1	0.29	0.30	0.41	11.4	11.8	16.1
С	0.11	0.17	0.23	4.3	6.7	9.1
c1	0.11	0.15	0.19	4.3	5.9	7.5
E	13.00	13.20	13.40	512	520	528
E1	9.90	10.00	10.10	390	394	398
[e]	_	0.800	_	_	31.5	_
L	0.73	0.88	1.03	28.7	34.6	40.6
L1	1.50	1.60	1.70	59.1	63.0	66.9
У	_	_	0.076	_	_	3
θ	0°	_	7°	0°	_	7°

8-Bits Micro-controller

With 64KB flash & 1KB RAM embedded

e MCU writer list						
Company	Contact info	Programmer Model Number				
Advantech 7F, No.98, Ming-Chung Rd., Shin-Tien City, Taipei, Taiwan, ROC Web site: http://www.aec.com.tw	Tel:02-22182325 Fax:02-22182435 E-mail: aecwebmaster@advantech.com.tw	Lab Tool - 48XP (1 * 1) Lab Tool - 848 (1*8)				
Hi-Lo 4F, No. 20, 22, LN, 76, Rui Guang Rd., Nei Hu, Taipei, Taiwan, ROC. Web site: http://www.hilosystems.com.tw	Tel:02-87923301 Fax:02-87923285 E-mail: support@hilosystems.com.tw	All - 11 (1*1) Gang - 08 (1*8)				
Leap 6th F1-4, Lane 609, Chunghsin Rd., Sec. 5, Sanchung, Taipei Hsien, Taiwan, ROC Web site: http://www.leap.com.tw	Tel:02-29991860 Fax:02-29990015 E-mail: service@leap.com.tw	Leap-48 (1*1) SU - 2000 (1*8)				
Xeltek Electronic Co., Ltd 338 Hongwu Road, Nanjing, China 210002 Web site: http://www.xeltek-cn.com	Tel:+86-25-84408399, 84543153-206 E-mail: xelclw@jlonline.com, xelgbw@jlonline.com	Superpro/2000 (1*1) Superpro/280U (1*1) Superpro/L+(1*1)				