## Thermally-Enhanced High Power RF LDMOS FETs 240 W, 1805 - 1880 MHz

## Description

The PTFB182503EL and PTFB182503FL are 240-watt LDMOS FETs intended for use in multi-standard cellular power amplifier applications in the 1805 to 1880 MHz frequency band. Features include input and output matching, high gain, wide signal bandwidth and reduced memory effects for improved DPD correctability. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

PTFB182503EL H-33288-6

PTFB182503FL H-34288-4/2


## Features

- Broadband internal input and output matching
- Enhanced for use in DPD error correction systems
- Typical two-carrier WCDMA performance,
$1880 \mathrm{MHz}, 30 \mathrm{~V}$
- Average output power $=50 \mathrm{~W}$
- Linear gain $=19 \mathrm{~dB}$
- Drain efficiency = 28 \%
- Intermodulation distortion $=-35 \mathrm{dBc}$
- Typical CW performance, $1880 \mathrm{MHz}, 30 \mathrm{~V}$
- Output power at $\mathrm{P}_{1 \mathrm{~dB}}=240 \mathrm{~W}$
- Efficiency = 55\%
- Increased negative gate-source voltage range for improved performance in Doherty peaking amplifiers
- Integrated ESD protection. Human Body Model, Class 2 (minimum)
- Capable of handling 10:1 VSWR @ 30 V, 240 W (CW) output power
- Pb-free, RoHS-compliant


## RF Characteristics

Two-carrier WCDMA Specifications (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.85 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=50 \mathrm{~W}$ average
$f_{1}=1840 \mathrm{MHz}, f_{2}=1845 \mathrm{MHz}$, 3GPP signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average $=7.5 \mathrm{~dB} @ 0.01 \%$ CCDF

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Gain | $\mathrm{G}_{\mathrm{ps}}$ | 18 | 19 | - | dB |
| Drain Efficiency | $\eta \mathrm{D}$ | 27 | 28 | - | $\%$ |
| Intermodulation Distortion | IMD | - | -35 | -31 | dBc |

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!

PTFB182503EL PTFB182503FL

## RF Characteristics (cont.)

Two-tone Specifications (not subject to production test-verified by design/characterization in Infineon test fixture) $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.85 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=220 \mathrm{~W}$ PEP, $f=1840 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Gain | $\mathrm{G}_{\mathrm{ps}}$ | - | 18 | - | dB |
| Drain Efficiency | $\eta \mathrm{D}$ | - | 40 | - | $\%$ |
| Intermodulation Distortion | IMD | - | -28 | - | dBc |

## DC Characteristics

| Characteristic | Conditions | Symbol | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Drain-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$ | $\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$ | 65 | - | - | V |
| Drain Leakage Current | $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{DSS}}$ | - | - | 1.0 | $\mu \mathrm{~A}$ |
| Drain Leakage Current | $\mathrm{V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{DSS}}$ | - | - | 10.0 | $\mu \mathrm{~A}$ |
| On-State Resistance | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$ | $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ | - | 0.03 | - | $\Omega$ |
| Operating Gate Voltage | $\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.85 \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{GS}}$ | 2.3 | 2.8 | 3.3 | V |
| Gate Leakage Current | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{GSS}}$ | - | - | 1.0 | $\mu \mathrm{~A}$ |

## Maximum Ratings

| Parameter | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Drain-Source Voltage | $\mathrm{V}_{\mathrm{DSS}}$ | 65 | V |
| Gate-Source Voltage | $\mathrm{V}_{\mathrm{GS}}$ | -6 to +10 | V |
| Junction Temperature | $\mathrm{T}_{\mathrm{J}}$ | 200 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | TSTG | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance $\left(\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 50 \mathrm{~W}\right.$ WCDMA) | $\mathrm{R}_{\theta \mathrm{JC}}$ | 0.262 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Ordering Information

| Type and Version | Package Outline | Package Description | Shipping |
| :--- | :--- | :--- | :--- |
| PTFB182503EL V1 | H-33288-6 | Thermally-enhanced slotted flange, single-ended | Tray |
| PTFB182503EL V1 R250 | H-33288-6 | Thermally-enhanced slotted flange, single-ended | Tape \& Reel, 250 pcs |
| PTFB182503FL V2 | H-34288-4/2 | Thermally-enhanced earless flange, single-ended | Tray |
| PTFB182503FL V2 R250 | H-34288-4/2 | Thermally-enhanced earless flange, single-ended | Tape \& Reel, 250 pcs |

## PTFB182503EL PTFB182503FL

Typical Performance (data taken in a production test fixture)


PTFB182503EL PTFB182503FL

## Typical Performance (cont.)



## Broadband Circuit Impedance



| Frequency | Z Source $\Omega$ |  | Z Load $\Omega$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{M H z}$ | $\mathbf{R}$ | $\mathbf{j X}$ | $\mathbf{R}$ | $\mathbf{j X}$ |
| 1780 | 2.99 | -2.48 | 1.33 | -0.49 |
| 1800 | 2.95 | -2.30 | 1.33 | -0.38 |
| 1820 | 2.89 | -2.13 | 1.31 | -0.27 |
| 1840 | 2.84 | -1.96 | 1.29 | -0.16 |
| 1860 | 2.80 | -1.76 | 1.29 | -0.02 |
| 1880 | 2.78 | -1.58 | 1.28 | 0.10 |
| 1900 | 2.74 | -1.39 | 1.29 | 0.23 |
| 1920 | 2.72 | -1.21 | 1.29 | 0.36 |



Rev. 06, 2010-11-09

## Reference Circuit



Reference circuit input schematic for $f=1880 \mathrm{MHz}$


Reference circuit output schematic for $f=1880 \mathrm{MHz}$

PTFB182503EL PTFB182503FL

## Reference Circuit (cont.)

| Description |  |  |  |
| :---: | :---: | :---: | :---: |
| DUT | PTFB182503EL or PTFB182503FL |  |  |
| PCB | 0.76 mm [.030"] thick, $\varepsilon$ r $=3.48$, Rogers 4350, 1 oz. copper |  |  |
| Electrical Characteristics at 1880 MHz |  |  |  |
| Transmission Line | Electrical <br> Characteristics | Dimensions: mm | Dimensions: mils |
| Input |  |  |  |
| TL101, TL117 | $0.022 \lambda, 78.27 \Omega$ | $\mathrm{W}=0.762, \mathrm{~L}=2.159$ | W = 30, L=85 |
| TL102 | $0.035 \lambda, 51.58 \Omega$ | $\mathrm{W}=1.651, \mathrm{~L}=3.358$ | $\mathrm{W}=65, \mathrm{~L}=132$ |
| TL103 | $0.050 \lambda, 9.67 \Omega$ | $\mathrm{W}=13.970, \mathrm{~L}=4.445$ | $\mathrm{W}=550, \mathrm{~L}=175$ |
| TL104 | $0.031 \lambda, 51.58 \Omega$ | W = 1.651, L = 3.018 | $\mathrm{W}=65, \mathrm{~L}=119$ |
| TL105 |  | $\begin{aligned} & \mathrm{W} 1=13.970, \mathrm{~W} 2=0.762, \mathrm{~W} 3=13.970, \\ & \mathrm{~W} 4=0.762 \end{aligned}$ | $\begin{aligned} & \mathrm{W} 1=550, \mathrm{~W} 2=30, \mathrm{~W} 3=550 \\ & \mathrm{~W} 4=30 \end{aligned}$ |
| TL106, TL107 |  | $\mathrm{W}=0.762$ | $\mathrm{W}=30$ |
| TL108, TL136 | $0.010 \lambda, 68.02 \Omega$ | $\mathrm{W} 1=1.016, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.016$ | $\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=40$ |
| $\begin{aligned} & \text { TL109, TL110, TL132, } \\ & \text { TL139 } \end{aligned}$ | $0.010 \lambda, 78.27 \Omega$ | $\mathrm{W} 1=0.762, \mathrm{~W} 2=0.762, \mathrm{~W} 3=1.016$ | $\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=40$ |
| TL111 |  | $\mathrm{W} 1=1.651, \mathrm{~W} 2=2.032$ | $\mathrm{W} 1=65, \mathrm{~W} 2=80$ |
| TL112, TL134 | $0.014 \lambda, 38.82 \Omega$ | $\mathrm{W}=2.540, \mathrm{~L}=1.321$ | $\mathrm{W}=100, \mathrm{~L}=52$ |
| TL113 | $0.020 \lambda, 78.27 \Omega$ | $\mathrm{W}=0.762, \mathrm{~L}=2.007$ | W = 30, L = 79 |
| TL114 | $0.099 \lambda, 92.53 \Omega$ | W = 0.508, L = 9.957 | $\mathrm{W}=20, \mathrm{~L}=392$ |
| TL115 | $0.016 \lambda, 68.02 \Omega$ | $\mathrm{W}=1.016, \mathrm{~L}=1.524$ | W $=40, \mathrm{~L}=60$ |
| TL116, TL137 | $0.017 \lambda, 78.27 \Omega$ | $\mathrm{W}=0.762, \mathrm{~L}=1.727$ | W = 30, L = 68 |
| TL118, TL119 | $0.001 \lambda, 68.02 \Omega$ | $\mathrm{W}=1.016, \mathrm{~L}=0.127$ | $\mathrm{W}=40, \mathrm{~L}=5$ |
| TL120, TL121 | $0.013 \lambda, 78.27 \Omega$ | $\mathrm{W}=0.762, \mathrm{~L}=1.270$ | W $=30, \mathrm{~L}=50$ |
| TL122 | $0.022 \lambda, 9.67 \Omega$ | $\mathrm{W}=13.970, \mathrm{~L}=1.981$ | $\mathrm{W}=550, \mathrm{~L}=78$ |
| TL123, TL124 | $0.007 \lambda, 68.02 \Omega$ | $\mathrm{W}=1.016, \mathrm{~L}=0.686$ | W = 40, L= 27 |
| TL125, TL126 | $0.118 \lambda, 78.27 \Omega$ | $\mathrm{W}=0.762, \mathrm{~L}=11.684$ | $\mathrm{W}=30, \mathrm{~L}=460$ |
| TL127 | $0.008 \lambda, 45.17 \Omega$ | $\mathrm{W}=2.032, \mathrm{~L}=0.762$ | W = 80, L = 30 |
| TL128 | $0.000 \lambda, 45.17 \Omega$ | $\mathrm{W}=2.032, \mathrm{~L}=0.025$ | W = 80, L = 1 |
| TL129 | $0.023 \lambda, 9.67 \Omega$ | $\mathrm{W} 1=13.970, \mathrm{~W} 2=13.970, \mathrm{~W} 3=2.032$ | $\mathrm{W} 1=550, \mathrm{~W} 2=550, \mathrm{~W} 3=80$ |
| TL130 | $0.000 \lambda, 9.67 \Omega$ | $\mathrm{W}=13.970, \mathrm{~L}=0.025$ | W = 550, L= 1 |
| TL131 (taper) | $0.028 \lambda, 9.67 \Omega / 51.58 \Omega$ | $\mathrm{W} 1=13.970, \mathrm{~W} 2=1.651, \mathrm{~L}=2.515$ | $\mathrm{W} 1=550, \mathrm{~W} 2=65, \mathrm{~L}=99$ |
| TL133 | $0.050 \lambda, 9.67 \Omega$ | $\mathrm{W}=13.970, \mathrm{~L}=4.470$ | W = 550, L = 176 |
| TL135 | $0.015 \lambda, 68.02 \Omega$ | $\mathrm{W}=1.016, \mathrm{~L}=1.514$ | W $=40, \mathrm{~L}=60$ |
| TL138 | $0.010 \lambda, 78.27 \Omega$ | $\mathrm{W}=0.762, \mathrm{~L}=0.991$ | W = 30, L = 39 |

table continued on page 7

PTFB182503EL PTFB182503FL

Reference Circuit (cont.)

## Electrical Characteristics at 1880 MHz

| Transmission Line | Electrical <br> Characteristics | Dimensions: mm | Dimensions: mils |
| :---: | :---: | :---: | :---: |
| Output |  |  |  |
| $\begin{aligned} & \text { TL201, TL219, TL220, } \\ & \text { TL222 } \end{aligned}$ |  | $\mathrm{W}=0.002, \mathrm{ANG}=90.000, \mathrm{R}=0.002$ | $\mathrm{W}=2, \mathrm{ANG}=3543307, \mathrm{R}=70$ |
| TL202 |  | $\mathrm{W} 1=1.651, \mathrm{~W} 2=2.032$ | $\mathrm{W} 1=65, \mathrm{~W} 2=80$ |
| TL203 | $0.012 \lambda, 51.58 \Omega$ | $\mathrm{W}=1.651, \mathrm{~L}=1.118$ | $\mathrm{W}=65, \mathrm{~L}=44$ |
| TL204 | $0.084 \lambda, 6.86 \Omega$ | $\mathrm{W}=20.320, \mathrm{~L}=7.366$ | $\mathrm{W}=800, \mathrm{~L}=290$ |
| TL205 | $0.011 \lambda, 45.17 \Omega$ | $\mathrm{W}=2.032, \mathrm{~L}=1.016$ | $\mathrm{W}=80, \mathrm{~L}=40$ |
| TL206 | $0.028 \lambda, 23.60 \Omega$ | $\mathrm{W}=4.928, \mathrm{~L}=2.540$ | $\mathrm{W}=194, \mathrm{~L}=100$ |
| TL207 | $0.028 \lambda, 23.79 \Omega$ | W = 4.877, L = 2.540 | W = 192, L = 100 |
| TL208 (taper) | $0.018 \lambda, 6.86 \Omega / 8.31 \Omega$ | W1 = 20.320, W2 = 16.510, L = 1.575 | $\mathrm{W} 1=800, \mathrm{~W} 2=650, \mathrm{~L}=62$ |
| TL209, TL210 | $0.076 \lambda, 34.08 \Omega$ | $\mathrm{W}=3.048, \mathrm{~L}=7.112$ | W = 120, L = 280 |
| TL211, TL216, TL224, TL225 | $0.032 \lambda, 34.08 \Omega$ | $\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=3.048$ | $\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=120$ |
| TL212, TL228, TL217, TL218, TL227 | $0.024 \lambda, 34.08 \Omega$ | $\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=2.286$ | $\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=90$ |
| TL213 | $0.008 \lambda, 34.08 \Omega$ | $\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=0.762$ | $\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=30$ |
| TL214, TL215 | $0.051 \lambda, 34.08 \Omega$ | $\mathrm{W}=3.048, \mathrm{~L}=4.826$ | $\mathrm{W}=120, \mathrm{~L}=190$ |
| TL221, TL242 | $0.013 \lambda, 51.58 \Omega$ | $\mathrm{W}=1.651, \mathrm{~L}=1.270$ | $\mathrm{W}=65, \mathrm{~L}=50$ |
| TL223 (taper) | $0.018 \lambda, 19.45 \Omega / 51.58 \Omega$ | $\mathrm{W} 1=6.248, \mathrm{~W} 2=1.651, \mathrm{~L}=1.651$ | $\mathrm{W} 1=246, \mathrm{~W} 2=65, \mathrm{~L}=65$ |
| TL226 |  | $\mathrm{W} 1=12.700, \mathrm{~W} 2=17.780$ | $\mathrm{W} 1=500, \mathrm{~W} 2=700$ |
| TL229, TL230 | $0.000 \lambda, 19.45 \Omega$ | $\mathrm{W}=6.248, \mathrm{~L}=0.025$ | $\mathrm{W}=246, \mathrm{~L}=1$ |
| TL231 (taper) | $0.038 \lambda, 8.31 \Omega / 19.45 \Omega$ | $\mathrm{W} 1=16.510, \mathrm{~W} 2=6.248, \mathrm{~L}=3.378$ | W1 = 650, W2 = 246, L = 133 |
| TL232 |  | $\begin{aligned} & \mathrm{W} 1=6.248, \mathrm{~W} 2=0.025, \mathrm{~W} 3=6.248, \\ & \mathrm{~W} 4=0.025 \end{aligned}$ | $\begin{aligned} & \mathrm{W} 1=246, \mathrm{~W} 2=1, W 3=246, \\ & \mathrm{~W} 4=1 \end{aligned}$ |
| TL233, TL234, TL237, <br> TL238 | $0.000 \lambda, 146.88 \Omega$ | $\mathrm{W}=0.025, \mathrm{~L}=0.025$ | $\mathrm{W}=1, \mathrm{~L}=1$ |
| TL235 | $0.005 \lambda, 51.58 \Omega$ | $\mathrm{W}=1.651, \mathrm{~L}=0.508$ | $\mathrm{W}=65, \mathrm{~L}=20$ |
| $\begin{aligned} & \text { TL236 } \\ & \text { TL239 } \end{aligned}$ | $0.000 \lambda, 8.31 \Omega$ | $\begin{aligned} & \mathrm{W}=16.510, \mathrm{~L}=0.025 \\ & \mathrm{~W} 1=20.320, \mathrm{~W} 2=0.025, \mathrm{~W} 3=20.320 \\ & \mathrm{~W} 4=0.025 \end{aligned}$ | $\begin{aligned} & W=650, L=1 \\ & W 1=800, W 2=1, W 3=800, \\ & W 4=1 \end{aligned}$ |
| TL240, TL241 | $0.000 \lambda, 6.86 \Omega$ | $\mathrm{W}=20.320, \mathrm{~L}=0.025$ | $\mathrm{W}=800, \mathrm{~L}=1$ |

PTFB182503EL PTFB182503FL

## Reference Circuit (cont.)

## Circuit Assembly Information

Test Fixture Part No. LTN/PTFB182503EF
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/ıfpower


Reference circuit assembly diagram (not to scale)

PTFB182503EL PTFB182503FL

Reference Circuit (cont.)

| Component | Description | Suggested Manufacturer | P/N |
| :---: | :---: | :---: | :---: |
| Input |  |  |  |
| C101 | Chip capacitor, 7.5 pF | ATC | ATC100B7R5BW500XB |
| C102, C103 | Chip capacitor, $4.71 \mu \mathrm{~F}$ | ATC | 493-2372-2-ND |
| C104 | Chip capacitor, 0.3 pF | ATC | ATC100A0R3BW150XB |
| C105, C106 | Chip capacitor, 10 pF | ATC | ATC100A100FW150XB |
| C801, C802, C803 | Capacitor, 1000 pF | Digi-Key | PCC1772CT-ND |
| R101, R102, R804, R805 | Resistor, $10 \Omega$ | Digi-Key | P10ECT-ND |
| R801 | Resistor, $1300 \Omega$ | Digi-Key | P1.3KGCT-ND |
| R802 | Resistor, $1200 \Omega$ | Digi-Key | P1.2KGCT-ND |
| R803 | Resistor, $100 \Omega$ | Digi-Key | P100ECT-ND |
| S1 | Potentiometer, 2k $\Omega$ | Digi-Key | 3224W-202ECT-ND |
| S2 | Transistor | Digi-Key | BCP5616TA-ND |
| S3 | Voltage Regulator | Digi-Key | LM78L05ACM-ND |
| Output |  |  |  |
|  |  |  |  |
| C201, C203 | Chip capacitor, $0.1 \mu \mathrm{~F}$ | Digi-Key | 445-1411-2-ND |
| C202, C204 | Capacitor, $10 \mu \mathrm{~F}$ | Garrett Electronics | 281M5002106K |
| C205, C206 | Chip capacitor, 0.6 pF | ATC | ATC100B0R6BW500XB |
| C207, C208 | Chip capacitor, $10 \mu \mathrm{~F}$ | Digi-Key | 587-1818-2-ND |
| C209, C210 | Chip capacitor, $0.1 \mu \mathrm{~F}$ | Digi-Key | 399-1267-2-ND |
| C211, C212 | Chip capacitor, 0.9 pF | ATC | ATC100B0R9BW500XB |
| C213, C215 | Chip capacitor, $2.2 \mu \mathrm{~F}$ | Digi-Key | 445-1447-2-ND |
| C214 | Chip capacitor, 10 pF | ATC | ATC100B100FW500XB |

## PTFB182503EL PTFB182503FL

## Package Outline Specifications

## Package H-33288-6



Diagram Notes-unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
2. Primary dimensions are mm . Alternate dimensions are inches.
3. All tolerances $\pm 0.127$ [.005] unless specified otherwise.
4. Pins: $G=$ gate, $S=$ source, $D=$ drain, $V=V_{D D}, E, F=N . C$.
5. Lead thickness: $0.10+0.051 /-0.025 \mathrm{~mm}[.004+0.002 /-0.001$ inch $]$.
6. Gold plating thickness: 0.25 micron [10 microinch] max.

Package Outline Specifications (cont.)


Diagram Notes-unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
2. Primary dimensions are mm. Alternate dimensions are inches.
3. All tolerances $\pm 0.127$ [.005] unless specified otherwise.
4. Pins: $\mathrm{D}=$ drain; $\mathrm{S}=$ source $; \mathrm{G}=$ gate $; \mathrm{V}=\mathrm{V}_{\mathrm{DD}}$.
5. Lead thickness: $0.10+0.051 /-0.025 \mathrm{~mm}[.004+0.002 /-0.001 \mathrm{inch}]$.
6. Gold plating thickness: 0.25 micron [ 10 microinch] max.

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

| Revision History: |  | 2010-11-09 |
| :--- | :--- | :--- |
| Previous Version: | 2010-10-07, Data Sheet | Data Sheet |
| Page | Subjects (major changes since last revision) |  |
| $1,2,10$ | Changed eared flange package type |  |
| 1 | Updated VSWR specification to 10:1 |  |
|  |  |  |
|  |  |  |

```
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at:
+1877 465 3667 (1-877-GO-LDMOS) USA
or +14087760600 International
```



## Edition 2010-11-09

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.

## Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

## Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

## Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

