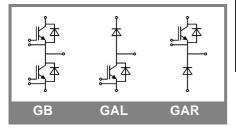


SEMITRANS[®] 2

IGBT Modules


SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

Features

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (10 mm) and creepage distance (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute Maximum Ratings T _c = 25 °C, unless otherwise speci					
Symbol Conditions			Values	Units	
IGBT				<u>.</u>	
V_{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	75	А	
		T _{case} = 80 °C	60	А	
I _{CRM}	I _{CRM} =2xI _{Cnom}		150	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs	
Inverse [Diode			•	
I_{F}	T _j = 150 °C	T_{case} = 25 °C	75	Α	
		T _{case} = 80 °C	50	А	
I_{FRM}	I _{FRM} =2xI _{Fnom}		150	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	480	А	
Freewhe	eling Diode			•	
I _F	T _j = 150 °C	T_{case} = 25 °C	95	Α	
		T _{case} = 80 °C	65	А	
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	Α	
I _{FSM}	$t_p = 10 \text{ ms}; \sin$	T _j = 150 °C	720	А	
Module				<u> </u>	
I _{t(RMS)}			200	Α	
T_{vj}			- 40+ 150	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		2500	V	

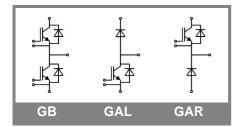
Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C T _i = 25 °C		0,1	0,3	mA
V_{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		22	28	mΩ
		T _j = 125°C		30	38	mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				3,3	4,3	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5	0,6	nF
C _{res}				0,22	0,3	nF
Q_G	V _{GE} = -8 - +20V			500		nC
R_{Gint}	$T_j = {^{\circ}C}$			5		Ω
t _{d(on)}				44	100	ns
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 600V		56	100	ns
E _{on}		I _{Cnom} = 50A		8		mJ
t _{d(off)}	$R_{Goff} = 22 \Omega$	T _j = 125 °C		380	500	ns
t _f		V _{GE} = ±15V		70	100	ns
E _{off}				5		mJ
$R_{th(j-c)}$	per IGBT				0,27	K/W

IGBT Modules

SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

Features

- MOS input (voltage controlled)
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)


Typical Applications

- AC inverter drives
- UPS

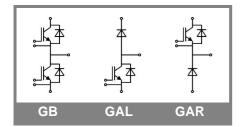
Characte	Characteristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V			2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		18	26	mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _{Fnom} = 50 A	T _j = 125 °C		35		A
Q _{rr}	di/dt = 800 A/µs					μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
R _{th(j-c)D}	per diode				0,6	K/W
	ling Diode					·
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	,		1,85	2,2	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,6		V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		15	20	V
		T _j = 125 °C				V
I _{RRM}	I _{Fnom} = 50 A	T _j = 125 °C		40		A
Q _{rr}	., .,,,,,					μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)FD}$	per diode				0,5	K/W
Module						
L _{CE}					30	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					160	g

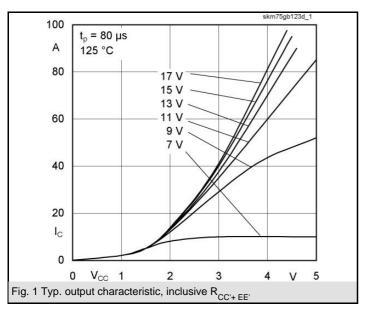
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

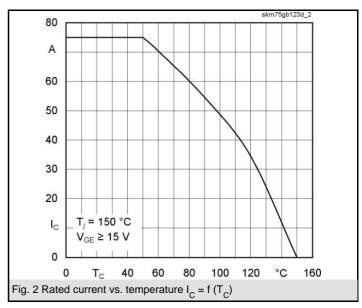
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

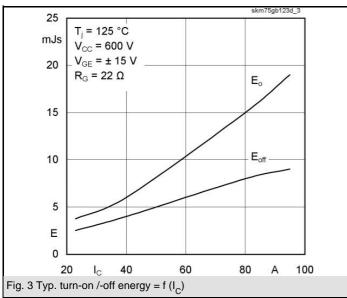
IGBT Modules

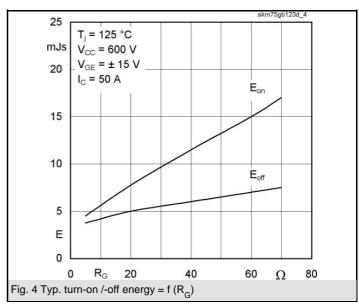
SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

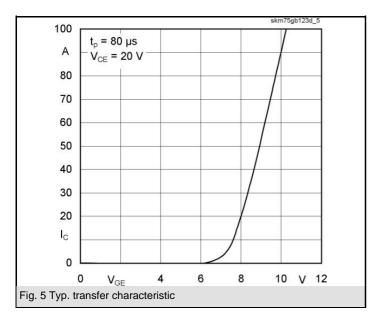

Features

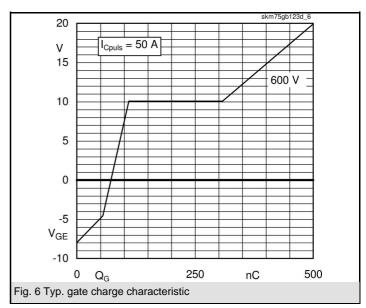

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)

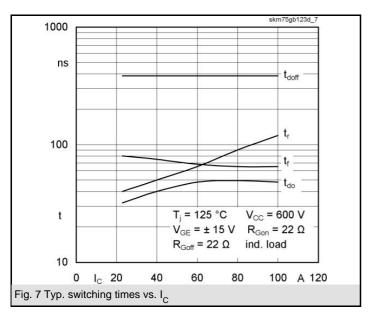

Typical Applications

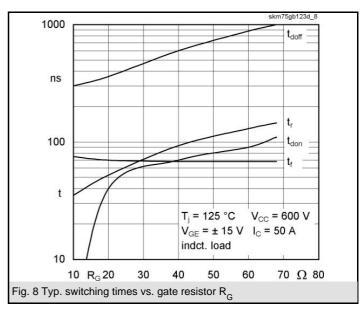

- AC inverter drives
- UPS

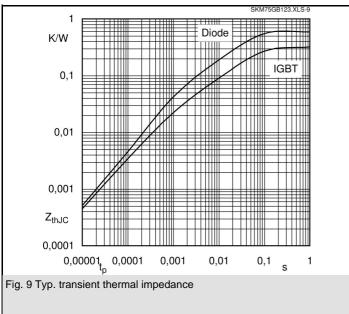

Symbol	Conditions	Values	Units
Z _{th(i o)}			<u> </u>
Z th(j-c)l R _i	i = 1	180	mk/W
R _i	i = 2	64	mk/W
R _i	i = 3	22	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0327	s
tau _i	i = 2	0,0479	s
tau _i	i = 3	0,008	S
tau _i	i = 4	0,005	s
Z R _i th(j-c)D			•
R _i	i = 1	380	mk/W
R _i	i = 2	190	mk/W
R _i	i = 3	26	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0947	s
tau _i	i = 2	0,006	s
tau _i	i = 3	0,08	s
tau _i	i = 4	0,003	s

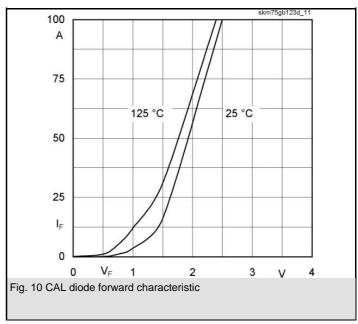


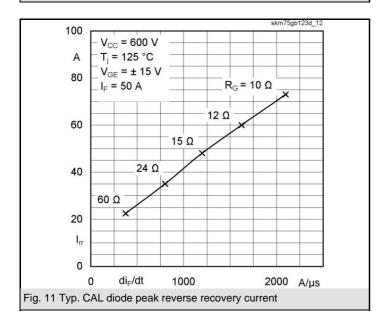


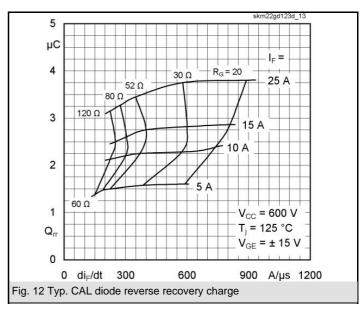


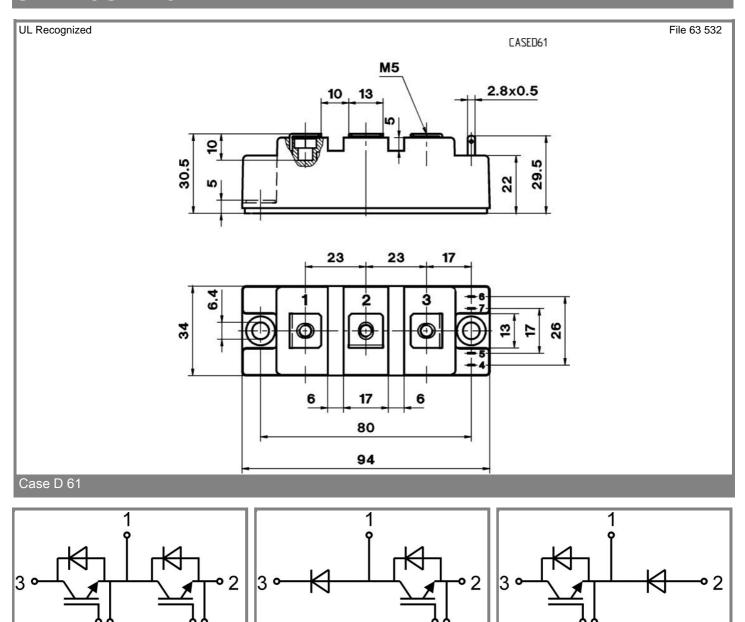












Case D 61

GAL

Case D 62 (→ D 61)

GAR

Case D 63 (→ D 61)