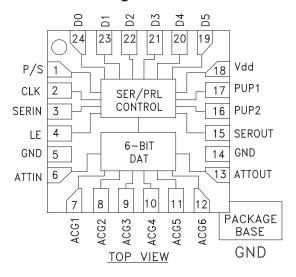
10

HMC624LP4 / 624LP4E

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz



Typical Applications

The HMC624LP4(E) is ideal for:

- Cellular/3G Infrastructure
- WiBro / WiMAX / 4G
- Microwave Radio & VSAT
- Test Equipment and Sensors
- IF & RF Applications

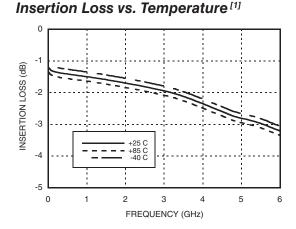
Functional Diagram

Features

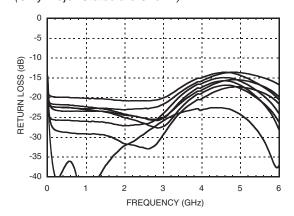
0.5 dB LSB Steps to 31.5 dB
High Input IP3: +55 dBm
Low Insertion Loss: 2.2 dB @ 3.5 GHz
TTL/CMOS Compatible, Serial or Parallel Control
±0.25 dB Typical Step Error
Single +3V or +5V Supply
Compact 4x4mm SMT Package

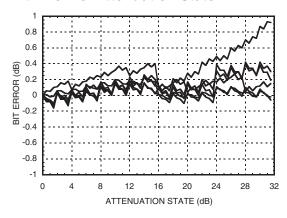
General Description

The HMC624LP4(E) is a broadband 6-bit GaAs IC Digital Attenuator in a low cost leadless SMT package. This versatile digital attenuator incorporates off-chip AC ground capacitors for near DC operation, making it suitable for a wide variety of RF and IF applications. The dual mode control interface is CMOS/TTL compatible, and accepts either a three wire serial input or a 6 bit parallel word. The HMC624LP4(E) also features a user selectable power up state and a serial output port for cascading other Hittite serial controlled components. The HMC624LP4(E) is housed in a RoHS compliant 4x4 mm QFN leadless package, and requires no external matching components.


Electrical Specifications,

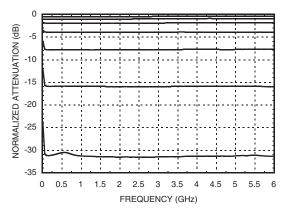
 $T_A = +25^{\circ} \text{ C}$, with Vdd = +5V & VctI = 0/+5V (Unless Otherwise Noted)


Parameter	Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss	DC - 3.0 GHz 3.0 - 6.0 GHz		1.8 2.8	2.4 3.8	dB dB
Attenuation Range			31.5		dB
Return Loss (ATTIN, ATTOUT, All Atten. States)	DC - 6.0 GHz		15		dB
Attenuation Accuracy: (Referenced to Insertion Loss) All Attenuation States	DC - 0.8 GHz 0.8 - 6.0 GHz	_ (ce,		dB dB	
Input Power for 0.1 dB Compression	DC - 6.0 GHz		30		dBm
Input Third Order Intercept Point (Two-Tone Input Power= 10 dBm Each Tone)	DC - 6.0 GHz		55		dBm



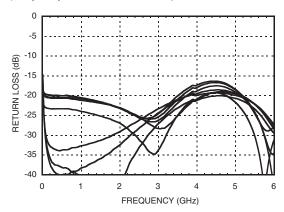
Input Return Loss [1] (Only Major States are Shown)

Bit Error vs. Attenuation State [2]

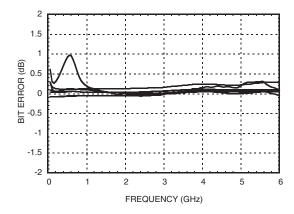


[1] Data taken with bias tees on input and output RF ports. [2] C1, C6 = 330pF

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz


Normalized Attenuation [1]

(Only Major States are Shown)

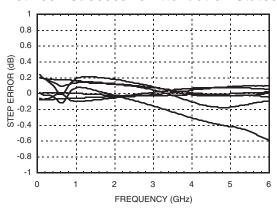

Output Return Loss [1]

(Only Major States are Shown)

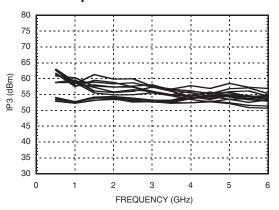
Bit Error vs. Frequency [2]

(Only Major States are Shown)

10

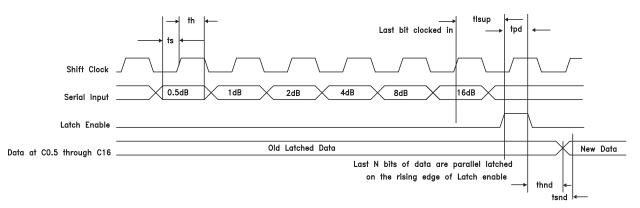


HMC624LP4 / 624LP4E


0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Worst Case Step Error Between Successive Attenuation States [2]

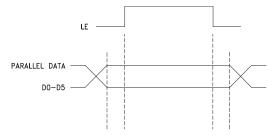
IP3 vs. Temperature [2]


0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Serial Mode

The serial mode is enabled then P/S is set to high. Data is entered LSB first and after the 6th shift clock cycle the LE (Latch Enable) is pulsed High and then Low. See timing diagram below for reference.

Timing Diagram


Serial data is shifted in on the rising edge of the Shift Clock, LSB first, and is latched on the rising edge of Latch Enable.

Timing

Parameter	Symbol	Vdd = +5V (Typ.)	Units
Serial Input Setup Time	ts	20	ns
Hold Time from Serial Input to Shift Clock	th	20	ns
Setup Time from Shift Clock to Latch Enable	tlsup	40	ns
Propagation Delay	tpd	10	ns
Setup Time for New Data	tsnd	10	ns

Timing Diagram (Latched Parallel Mode)

Parallel Mode (Direct Parallel Mode & Latched Parallel Mode)

Direct Parallel Mode - The attenuation state is changed by the Control Voltage Inputs directly. The LE (Latch Enable) must be at a logic high to control the attenuator in this manner.

Latched Parallel Mode - The attenuation state is selected using the Control Voltage Inputs and set while the LE is in the Low state. The attenuator will not change state while LE is Low. Once all Control Voltage Inputs are at the desired states the LE is pulsed. See timing diagram below for reference.

HMC624LP4 / 624LP4E

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Power-Up States

Using the Parallel PUP truth table the attenuator can be turned on at a specific attenuation state. By using the PUP1 and PUP2 line four different attenuation states can be selected. It can also be used in the Direct Parallel Mode using the Control Voltage Inputs to select attenuation values.

Parallel PUP Truth Table

P/S	LE	PUP2	PUP1	Attenuation State
0	0	0	0	31.5 dB
0	0	1	0	24 dB
0	0	0	1	16 dB
0	0	1	1	8 dB
0	1	Х	Х	0.5 to 31.5 dB

Note: Power-Up with LE= 1 provides normal parallel operation with D0 - D5, and PUP1 and PUP2 are not active.

Absolute Maximum Ratings

RF Input Power (DC - 6 GHz) [1]	27 dBm (T = +85 °C)
Digital Inputs (Reset, Shift Clock, Latch Enable & Serial Input)	-1.5V to (Vdd +1.5V) Vdc
Bias Voltage (Vdd)	5.6 Vdc
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 9.8 mW/°C above 85 °C) [1]	0.635 W
Thermal Resistance	102 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

^[1] At max gain settling

Truth Table

Control Voltage Input					Attenuation State		
D5	D4	D3	D2	D1	D0	Attenuation State	
High	High	High	High	High	High	Reference I.L.	
High	High	High	High	High	Low	0.5 dB	
High	High	High	High	Low	High	1 dB	
High	High	High	Low	High	High	2 dB	
High	High	Low	High	High	High	4 dB	
High	Low	High	High	High	High	8 dB	
Low	High	High	High	High	High	16 dB	
Low	Low	Low	Low	Low	Low	31.5 dB	

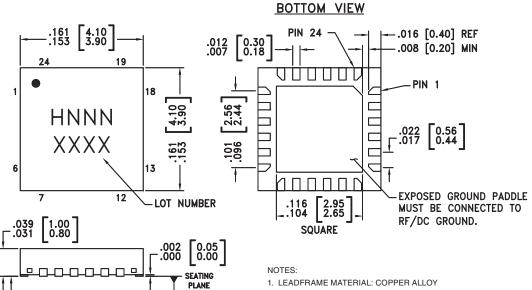
Bias Voltage

Vdd (Vdc)	Idd (Typ.) (mA)
3	1.8
5	2.0

TTL/CMOS Control Voltage

approximately equal to the sum of the bits selected.

State	Vdd= +3V or +5V
Low	0 to 0.8V
High	2.0V to Vdd


Any combination of the above states will provide an attenuation

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Outline Drawing

-C-

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5 PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC624LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H624 XXXX
HMC624LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H624 XXXX

[1] Max peak reflow temperature of 235 °C

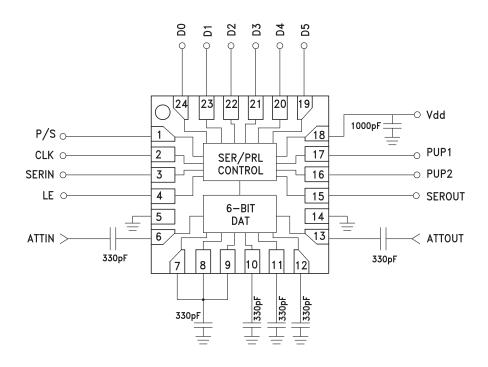
□ .003[0.08] C

- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

10

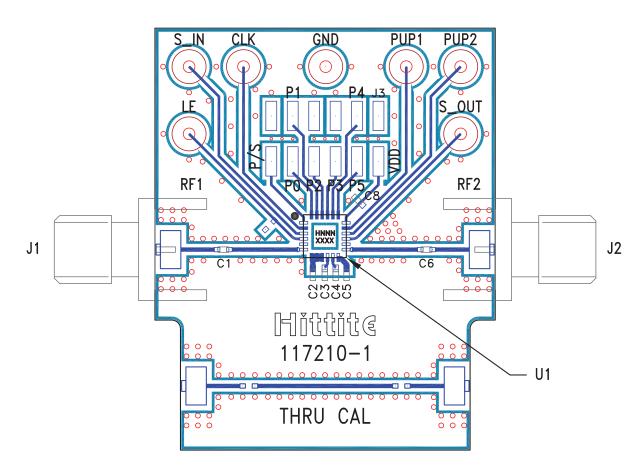
0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Pin Descriptions


2000pu			
Pin Number	Function	Description	Interface Schematic
1 2 3	P/S CLK SERIN LE	See truth table, control voltage table and timing diagram.	P/S CLK SERIN LE
5, 14	GND	These pins and package bottom must be connected to RF/DC ground.	GND =
6, 13	ATTIN, ATTOUT	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required. Select value based on lowest frequency of operation.	ATTIN, O
7 - 12	ACG1 - ACG6	External capacitors to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
15	SEROUT	Serial input data delayed by 6 clock cycles.	Vdd O SEROUT
16, 17 19 - 24	PUP2, PUP1 D5, D4, D3, D2, D1, D0	See truth table, control voltage table and timing diagram.	PUP2, PUP1 D0-D5
18	Vdd	Supply voltage	

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Application Circuit



0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117212 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3	14 Pin DC Connector	
C1, C6	330 pF Capacitor, 0402 Pkg.	
C7, C8	1000 pF Capacitor, 0402 Pkg.	
U1	HMC472LP4(E) Digital Attenuator	
PCB [2]	117210 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

HMC624LP4 / 624LP4E

RoHS V

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6.0 GHz

Notes: