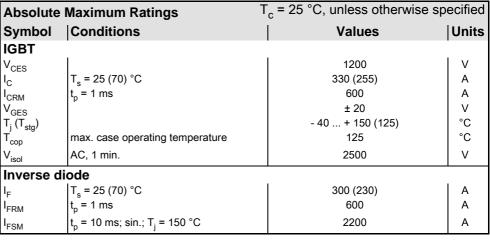
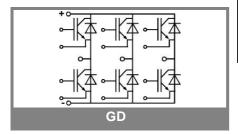
SKIM 400GD126DM

IGBT Modules

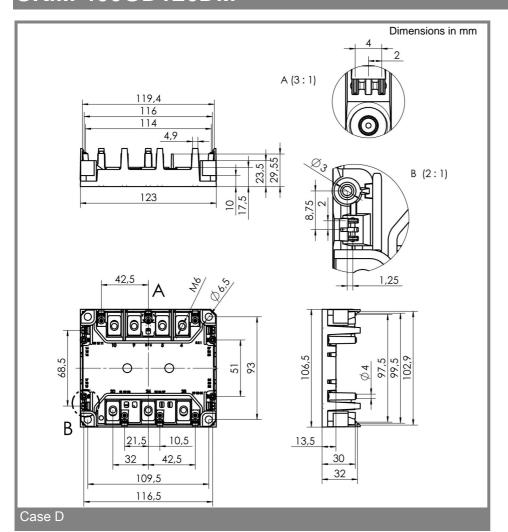
SKiM 400GD126DM

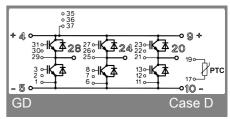

Target Data

Features


- Trench gate IGBT with field stop layer
- · Low inductance case
- Fast & soft inverse CAL diodes
- Isolated by AIN DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- Spring contact system to attach driver PCB to the control terminals
- Integrated temperature sensor

Typical Applications


- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Switching (not for linear use)



Characte	ristics	_c = 25 °C	°C, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 12 \text{ mA}$	4,95	5,8	6,55	V
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 °C$			0,6	mA
V_{CEO}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V
r_{CE}	T _j = 25 (125) °C		2,3 (3,7)	3 (4,5)	mΩ
V_{CEsat}	I _{Cnom} = 300 A; V _{GE} = 15 V,		1,7 (2)	2,15 (2,45)	V
	T _j = 25 (125) °C on chip level				
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		23		nF
C _{oes}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		1,6		nF
C _{res}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		1,6		nF
L _{CE}				15	nΗ
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		1,35 (1,75)		mΩ
t _{d(on)}	V _{CC} = 600 V				ns
t _r	I _{Cnom} = 300 A				ns
$t_{d(off)}$	$R_{Gon} = R_{Goff} = \Omega$				ns
t _f	T _j = 125 °C				ns
$E_{on} (E_{off})$	V _{GE} ± 15 V		29 (46)		mJ
$E_{on}\left(E_{off}\right)$	with SKHI 64; T_j = 125 °C				mJ
	V _{CC} = 600 V; I _C = 300 A				
Inverse d	iode				
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V; T _i = 25 (125) °C		2 (1,8)	2,55 (2,3)	V
V_{TO}	T _i = 25 (125) °C		1,1	1,45 (1,25)	V
r _T	T _j = 25 (125) °C		4,5	5,3 (5,3)	mΩ
I _{RRM}	I _F = 300 A; T _i = 125 °C				Α
Q_{rr}	V _{GE} = V di/dt = A/µs				μC
E _{rr}	R _{Gon} = R _{Goff} =				mJ
Thermal of	haracteristics				
$R_{th(j-s)}$	per IGBT			0,134	K/W
$R_{th(j-s)}$	per FWD			0,19	K/W
Temperat	ure Sensor				
R _{TS}	T = 25 (100) °C		1 (1,67)		kΩ
tolerance	T = 25 (100) °C		3 (2)		%
Mechanic	al data				
M_1	to heatsink (M5)	2		3	Nm
	for terminals (M6)	4		5	Nm
M_2	for terminals (M6)	4		J	14111

SKiM 400GD126DM

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.